本书内容包括随机事件与概率,随机变量(向量)及其分布,随机变量的数字特征,极限定理,抽样分布,参数估计,假设检验,方差分析,回归分析等。各章末均有习题,可作为高等院校(非数学专业)概率论与数理统计课程的教材或参考书,也可供具有高等数学知识的实际工作者的自学参考书。
《数值分析》介绍了科学与工程计算中常用的数值计算方法及相关理论。内容包括解线性方程组的直接法和迭代法、插值法、函数最优逼近、数值微积分、非线性方程(组)的迭代解法、矩阵特征值和特征向量的计算、常微分与偏微分方程数值解法等。其中包含了一些在实际中有重要应用的新方法,如求解超定方程组的最小二乘法、求解线性方程组的基于伽辽金
本书分为4篇,共18章。包括数学实验绪论、常见软件包简介、基础实验、探索实验、数学建模实验等数学实验内容,数学建模绪论、初等模型、代数模型、微分方程模型、差分方程模型、数学优化模型、动态优化模型、随机模型及离散数学模型等数学建模内容,艾滋病的疗效、一元三次方程的实根个数、生产函数、城市公交乘坐路线选择等研究性学习与课程
这本《计算方法》由何满喜和曹飞龙编著,根据普通高等理工科院校“计算方法”和“数值分析”课程的教学大纲编写而成,重点介绍计算机上常用的典型计算方法和基本理论。主要内容包括数值计算中的误差分析、线性方程组与非线性方程组的解法、矩阵特征值与特征向量的计算、非线性方程求根的方法、数值逼近的插值法与数据拟合法、数值积分与数值微分
本书讲述结构分析中的有限单元法的基本原理、程序设计和航空结构有限元分析建模技术。基础理论部分主要介绍杆系结构、平面问题、空间问题和等参数单元,重点是有限元法的基本原理及表达格式的建立途径,单元插值函数和特性矩阵的构造及不同单元特性的比较;程序部分结合二维问题静力分析算例,讨论了有限元结构分析的流程、数据结构、算法及其C
《概率论与数理统计(第3版)》是一本高等学校非数学专业的概率论与数理统计教材。《概率论与数理统计(第3版)》共9章,内容包括随机事件、随机变量、随机向量、数字特征、极限定理、样本与统计量、参数估计、假设检验,回归分析与方差分析。各章后选配了适量习题,并在书后附有习题答案与选解。书末
《概率论与数理统计基础》共分9章,第1章为预备知识,包括排列与组合以及概率统计基础中用到的一些微积分的基本结论。第2~6章为概率论部分,包括随机事件及其概率、随机变量及其概率分布、随机向量及其概率分布、随机变量的数字特征、极限定理。第7~9章是数理统计基础,包括抽样分布、参数估计、假设检验。
《马氏过程》从Blumenthal-Getoor的一般马氏过程理论及其概率位势理论出发,对常返与暂留性作了较为深入的讨论,然后引入对称的马氏过程与狄氏型理论,简述他们的相互关系,再给出完整的马氏过程加泛函的随机分析理论,另外还将这些理论应用于对称马氏过程的Donsker-Varadhan的大偏差理论得到了非常漂亮的一些
《数值分析与科学计算》系统地介绍了数值分析的有关内容,共十章.内容包括:误差:非线性方程求根;线性方程组的数值解法;解线性代数方程组的迭代法;非线性方程组数值解与最优化方法;插值方法;数据拟合与函数逼近;数值积分和数值微分;常微分方程的数值解;矩阵特征值与特征向量的计算.本书的最大特色是在书中增加了科学计算与matla
《数学建模教程》结合编者多年数学建模课程教学、数学建模竞赛的经验和一般理工科院校的学生实际,重点介绍了数学建模的思想方法,并注意与大学数学课程体系中其他课程的衔接。全书共分8章,内容包括数学模型与数学建模的基本知识、初等模型、简单优化模型、微分方程与差分方程模型、统计回归模型、数学规划模型、图与网络模型及方法、其他方法