近年来,在图像处理与强度可调辐射疗法的实际应用背景下,分裂可行性问题成为近期非线性分析的研究热点之一。本专著从三个方面研究分裂可行性问题与广义分裂可行性问题(分裂公共不动点问题、分裂变分不等式问题和分裂公共零点问题)解的迭代逼近。主要体现在新算法设计、空间扩展和参数减弱限制条件等方面。对于丰富和扩展分裂可行性问题相关理
第1-12章是《测度论基础与高等概率论》上册,其中第1,2章是预备知识,第3-12章是测度论基础。本书强调背景知识的深刻描述、基本概念的自然引入、科学素养的悄然渗透,从谋篇布局到板块转换,直至例题编制都精雕细琢,从章节引言到问题切人,直至定义、引理、命题、定理前的导语都字斟句酌。为避免初学者从初等概率论到高等概率论因跃
第1-12章是《测度论基础与高等概率论学习指导》上册,其中第1,2章是预备知识,第3-12章是测度论基础。作为学习指导用书,本书与同名作者编著的《测度论基础与高等概率论》配套,目的是部分地解决初学者学习“测度论”和“高等概率论”等课程的过程中在做题环节常常无从下手、方向感差、不知论证是否严谨,解答是否完整等问题。与教材
郭柏灵论文集第十六卷收集的是郭柏灵先生发表于2018年度的主要科研论文,涉及的方程范围宽广,有确定性偏微分方程和随机偏微分方程,研究的问题包括适定性、爆破性、渐近性、孤立波等等。这些论文具有很高的学术价值,对偏微分方程、数学物理、非线性分析、计算数学等方向的科研工作者和研究生,是极好地参考著作。
《变分分析与应用》是BorisS.Mordukhovich教授在变分分析与非光滑优化领域的**专著。本书主要在有限维空间中对变分分析的关键概念和事实进行系统和易于理解的阐述,这部分内容包括一阶广义微分的基本结构、集合系统的极点原理、增广实值函数的变分原理、集值映射的适定性、上导数分析法则、集值算子的单调性和一阶次微分分
本书以反散射理论、Riemann-Hilbert(RH)方法和非线性速降法为工具,系统分析散焦NLS方程在有限密度初值下解的长时间渐近性和孤子分解,主题部分取材于Cuccagna,Jerkins和作者**研究成果。内容主要包括散焦NLS方程初值的RH问题表示、RH问题的可解性、在孤子区域中的孤子分解和在无孤子区域中的长
本书主要内容包括偏微分方程基础知识、Sobolev空间基本知识、Galerkin方法、有限元方法及其误差估计、泊松问题的其他数值方法、不可压缩Navier-Stokes问题有限元应用、修正的特征有限元方法和随机不可压缩流问题全离散有限元方法。有些章末附有课后练习,是对书中重点内容的升华和延伸。本书既有经典数值方法和理论
本书介绍了移动网格方法的历史和现状,作者根据这几年对移动网格方法的一些研究体会,写成此书。本书研究的移动网格方法要做的就是保持单元或节点数不变而通过重新分布节点位置实现自适应目标。特别地,我们将把动态网格与求解过程结合起来,用最适合求解问题的方式来生成网格,即在解的梯度大的地方网格自动加密,而在解的梯度小的地方网格自动
本书主旨是以能量临界Schrodinger方程、聚焦非线性Klein-Gordon方程为范例,向读者介绍近年来非线性色散(波)方程研究中派生的Bourgain能量归纳法、陶哲轩I-团队的相互作用Morawetz估计及其局部化技术、Kenig-Merle在色散框架下发展的变分原理与刚性方法。主要涉及非线性色散方程的物理背
本书为首批***一流本科课程数学分析的配套教材,分上、下两册出版。本册是上册,共8章,主要讲述一元函数微积分的内容,包括集合与函数、数列极限、函数极限与连续函数、导数与微分、微分中值定理及应用、不定积分、定积分、反常积分。本书每节选用了适量有代表性和启发性的例题,还配有足够数量的习题,其中既有一般难度的题目,也有较难的