本书较系统地讨论了非线性中立型泛函微分方程数值方法的稳定性、收敛性和耗散性。本书共8章,第1章介绍了中立型泛函微分方程数值分析的应用背景和研究进展;第2章致力于中立型泛函微分方程理论解的稳定性分析,为其算法分析奠定基础;第3章在一般的Banach空间中研究数值方法的稳定性和收敛性;第4—6章分别讨论了三种特殊类型中立型
本书是一本用英文写成的数学类教材,是作者基于多年的科研和全英文教学经验编写而成的。全书分为10章。前3章是预备知识和方法,包含了某些数学软件程序、某些函数和积分公式以及平面系统的相图等内容。后7章是针对7个著名方程所描述的非线性波进行数值模拟和推导其表达式,包含KdV方程的行波、mKdVI方程的孤立波和周期波、mKdV
本教材的前两册涵盖了通常的“高等数学”和“工科数学分析”的内容,同时注重数学思想的传递、数学理论的延展、科学方法的掌握等。第三册则是在现代分析学的高观点与框架下编写的,不仅开阔了学生的视野,让学生尽早领略现代数学的魅力,而且做到了与传统的数学分析内容有机融合。像实数连续性理论、一致连续性与一致收敛性、可积性理论等较难的
"本书是根据黄永彪、杨社平主编的《一元函数微积分》编写而成的配套辅导教材。全书包括函数、函数极限、连续函数、导数与微分、中值定理与导数的应用、不定积分和定积分等内容。 本书按照主教材的章节顺序编排内容,便于学生同步学习使用,各章节的基本框架为: 基本要求学习本节知识的要求和需要掌握的程度及考查的要点. 知识要点梳
第一卷为单变量情形。第一卷包括九章,前三章主要介绍函数、极限、微分和积分的基本概念及其运算;第四章介绍微积分在物理和几何中的应用;第五章讲述泰勒展开式;第六章讲述数值方法;第七章介绍无穷和与无穷乘积的概念;第八章为三角级数;第九章是与振动有关的最简单类型的微分方程。本书包含大量的例题和习题,有助于读者理解本书的内容。
第二卷为多变量情形。第二卷包括八章。第一章详论多元函数及其导数,包括线性微分型及其积分,补充了数学分析中最基本的概念的严密证明;第二章在线性代数方面为现代数学分析的基础准备了充分的材料;第三章叙述多元微分学的发展及应用,包括隐函数存在定理的严密证明,多元变换与映射的基本理论,曲线、曲面的微分几何基础知识以及外微分型等基
《微分方程模型与解法》主要介绍了常微分方程(组)和偏微分方程(组)描述的一些常用模型的导出及其常用求解方法,内容包括常微分方程模型与解法、一阶偏微分方程模型与解法、二阶线性偏微分方程的分类与化简、波动方程与解法、热传导方程与解法、积分变换法、偏微分方程其他解法、附录等。
本书介绍了求解动力学常微分方程的时间积分方法,主要包括Newmark类方法、级数类方法、Runge-Kutta等高阶方法、高精度时间积分方法、复合时间积分方法、非线性系统的保能量方法、非光滑系统的时间步进方法、非线性动力学系统的无条件稳定时间积分方法、时变系统的时间积分方法、模态叠加方法和时间积分方法的联合使用策略。书
本书是数学物理方程的入门教材,主要介绍三个经典方程(波动方程、热传导方程和Laplace方程)定解问题的导出及求解。通过介绍一般二阶线性偏微分方程的分类与化简,指明这三个方程代表着数学物理方程的三种类型。针对不同的定解问题,介绍了如分离变量法、积分变换法、通解法和Green函数法等常规的求解方法,还介绍了由分离变量法求
本书是作者在电子科技大学讲授十余年高等微积分(数学分析)的基础上编写而成的,是为需要深厚数理基础的高素质创新型理工科人才编写一本数学分析教材。全书共六章,内容包括:点列极限与实数理论、函数极限与连续函数、微分学、积分学、级数理论、常微分方程。每一章均配有大量的典型例题和具有一定难度的习题,书后还附有参考答案与提示。本书