仿射微分几何是一门发展较早的学科。本书作者从二十年年代中期到三十年代初期在这一类学科中做了大量工作。本书充分反映了作者的研究工作成果。
《流形拓扑学:理论与概念的实质》是一部关于流形的拓扑学专著,较全面和系统地介绍了拓扑学大多数重要领域中的理论与方法。内容涉及微分拓扑、同调论、同伦论、微分形式与谱序列、不动点理论、Morse理论,以及向量丛的示性类理论。同时,书中也介绍了作者新发展的流形共轭结构理论,主要结果包括共轭对称性定理,上、下同调群的几何化定理
本书以三维空间的向量运算和微分几何为理论基础,以几何学在生产实际中的一些应用为主要内容,论述了微分几何在机械设计和加工、船体的设计和制造等方面的一些应用。
《几何画板课件制作教程(第3版)》主要以范例的形式全面介绍新版几何画板软件的新功能、新特点,并结合数学课件特点系统地介绍课件设计开发的方法和技巧。结合开发过程挖掘几何画板的潜在功能及技巧,创意出许多新的知识内容表现方式和方法,将一个二维工具推广到三维空间的应用,极大地丰富了几何画板的创作空间。另外随书光盘中收录了大量的
《微分几何基础(第1卷)》根据S.KobayashiandK.Nomizu所著的FoundationsofDefferentialGeometry(Wilev&Sons公司出版的Wiley经典文库丛书(1996版)(第一卷)译出。本卷首先给出了若干必要的预备知识,主要包括微分流形、张量代数与张量分析、Lie群和纤维丛等
本书讲述解析几何的基本内容和基本方法,包括向量代数、空间坐标系、空间的平面和直线、常见曲面和曲线、二次曲面的一般理论。本书注重读者的空间想象能力,论证严谨而简明,叙述深入浅出、条理清楚。书末附有各章练习题的答案与提示。本书可作为综合大学和高等师范院校数学及其相关专业解析几何课程的教材,也可供其他学习解析几何课程的广大读
拓扑学是数学的重要分支,内容丰富且研究途径众多,不少初学者视其为畏途。本书以点集拓扑学为基础,通过对一般拓扑学、拓扑动力系统、代数拓扑学、微分拓扑学中的一些专题论述,向读者简要介绍拓扑学中的一些基本知识、研究思想以及解决问题的方法,以较少的篇幅展现拓扑学中的一些精彩画卷。本书主要内容包括:集合与序集、拓扑空间、几类重要
本书在介绍度量空间之后,引入拓扑空间,然后叙述拓扑空间的连续映射和同胚、紧致性、连通性、乘积空间和商空间;从单形入手介绍单纯复形和多面体的概念和性质、重心、重分和单纯逼近存在定理;基本群定义及其同伦等价不变性、计算方法和一些计算结果的应用;在单纯同调群之后介绍奇异同调群及其同伦等价不变性、同调群的正合序列、切除定理。第
本书(上册)是物理系研究生课(兼本科选课)的基础性教材,共10章。前5章从零开始讲授微分几何入门知识,第6章以此为工具剖析狭义相对论,第7-10章介绍广义相对论和宇宙论的基本内容。本书强调低起点(大学物理系本科2年级水平),力求深入浅出,化难为易,为降低难度甚至不惜耗费篇幅详加解说。适用于物理系硕、博士研究生、二年级以
代数拓扑学是从同调论发展起来的本书着重讨论各种同调理论之间的关系,以及在拓扑与几何中至关重要的示性类理论,示性类理论的应用范围很广,凡涉及到流形或向量从的问题,例如微分几何、复流形、代数几何等,都要以它作为一种工具.本书采用微分形式来讲示性类,这样就照顾到了非拓扑专业研究人员的需要