hisbookaddressesrecentdevelopmentsinsignpatternsforgeneralizedinverses.Thefundamentalimportanceofthefieldsisobvious,sincetheyarerelatedwithqualitativeanalysisof
本书是高等院校本科生高年级《模糊数学》教材,书中系统介绍了模糊理论的基本内容,包括模糊集合的定义与运算、模糊算子、模糊性的度量、分解定理、表现定理、扩展原理、模糊数、模糊关系以及模糊关系方程等,同时也介绍了隶属函数的确定方法、模糊模式识别、模糊聚类分析、模糊综合评判等应用方面的内容.每章配有习题,书末附有习题的部分答案
李群与李代数是核心数学领域中的一个重要的交叉学科,且是微分几何、微分方程、调和分析、群论、代数、动力系统、数论、理论物理、量子化学、应用数学乃至工程技术等领域的重要工具。现代高校普遍开设李群与李代数基础课程。本书为作者在中国科学院和首都师范大学授课多年的基础上写成的李群与李代数基础教科书,内容共有十二章,分别为引言、分
本书系统介绍了群、环、域、模等四种代数结构的基本理论、性质和研究方法,并简要介绍了它们在数学、编码和密码等领域的一些简单应用.全书共七章,第1章是预备知识,第2、3章介绍群论知识及其在计数问题中的应用,第4、5章介绍环论知识及其在编码和密码中的简单应用,第6章介绍域扩张理论及其在解决高次方程根式解问题和尺规作图问题中的
本书按照教育部对高校理工类本科“线性代数”课程的基本要求及考研大纲编写而成.本书注重数学概念的实际背景与几何直观的引入,强调数学建模的思想与方法,密切联系实际,精选许多实际应用的案例并配有相应的习题,还融入了MATLAB的简单应用及实例.《BR》本书共8章,内容包括行列式、矩阵、矩阵的初等变换与初等矩阵、线性方程组、特
离散数学是计算机相关专业的主干课程之一。本书将理论紧密联系实际,摒弃了一些烦琐的定理证明,从工程实际出发,引入工程案例和解决方案,注重提升学生的应用模拟解题技巧,力求做到脉络清晰,重点突出,精讲多练,实用有效,从而培养学生的抽象思维和缜密概括能力。 本书内容包括离散数学4大分支的基础理论——数理逻辑、集合论、代数系统和
本书是南开大学代数类课程整体规划系列教材的第四本,是在作者多年从事代数类系列课程的教学过程中逐渐完成的.在国内外已有的同类教材的基础上,编者根据自己对代数学的理解,按照有限群表示论发展的主要脉络来安排本书的内容全书分为8章,包括预备知识、表示论的基本概念、特征标、McKay对应、群代数、对称群与交错群的表示、诱导表示和
经典数论的主要内容既包括整数理论、同余理论、一次到n次剩余方程、丢番图方程、佩尔方程、连分数、原根与指数,也包括费尔马-欧拉定理、威尔逊-高斯定理、秦九韶定理(中国剩余定理)、勒让德符号与二次互反律、表整数为平方和、荷斯泰荷姆定理等.此外,它还伴随着遐迩闻名的完美数问题、同余数问题、费尔马大定理、哥德巴赫猜想、孪生素数
本书详细阐述了稀疏矩阵相关计算的应用背景,并对目前已知的主要压缩编码格式进行了详细介绍。在此基础上,分别对稀疏矩阵向量乘(SpMV)、稀疏矩阵稀疏矩阵乘(SpGEMM)的算法设计和实现技术进行了详细阐述;给出了面向异构计算平台的稀疏矩阵划分方法及SpMV负载均衡算法,能够适用于CPU+GPU以及多GPU构成的异构计算系
本书共六章,包括行列式、矩阵、向量空间、线性方程组、二次型、线性空间与线性变换。对非考研学生,第6章作为选学内容。针对不同学校、不同专业线性代数课程学时不同的情况,书中部分内容用楷体字呈现,教师可根据学时情况和学生接受程度酌情取舍,这样既降低了学生的学习难度,也使得学习主线清晰简单,内容易懂好学。书中配有各层次的例题和