本书第一部分主要介绍了广义函数论的基本内容,包括广义函数的定义、正则化、局部理论、乘子、卷积与张量积以及它的Fourier变换等经典内容;作为应用,考虑了常系数线性偏微分方程的基本解。第二部分主要介绍了经典函数空间的基本内容,包括Sobolev空间、H。lder空间、Lorentz空间在内的常见函数空间;Sobolev
本书是StefanG.Samko,AnatolyA.Kilbas,OlegI.Marichev所著英文专著FractionalIntegralsandDerivatives:TheoryandApplications的中文翻译版本。书中阐述了几乎所有已知的分数阶积分-微分形式,并对它们进行了相互比较,强调了一个函数能否
傅里叶级数理论经历了近两百年的发展后已经成为现代数学的核心研究领域之一。一方面,它与偏微分方程论、复变函数论、概率论、代数及拓扑等许多数学分支都有密切关系。另一方面,它是工程技术、经典物理及量子力学等学科中的重要工具,它在热学、光学、电磁学、医学、空气动力学、仿生学、生物学等领域都有广泛的应用。傅里叶级数理论的产生是数
随着现代科学技术的发展,不适定问题的有效求解在地质勘探、遥测遥感、图像处理、深度学习等领域发挥着日益重要的作用。所谓不适定问题,是指由于客观条件的限制,待求解问题解的存在性、唯一性或者稳定性难以保证。由于工程应用中的输入数据总是带有误差的,不适定问题稳定性的恢复,对求解实际应用问题具有特别重要的意义。在本书前五章,我们
在本书中,我们将重点讨论稳态Navier-Stokes方程的Liouville定理方面的内容,围绕全空间上Leray问题这一公开问题展开讨论,希望能促进此问题的推广与深入研究,这涉及到Navier-Stokes方程解的分类问题,也跟经典Navier-Stokes方程的正则性紧密相关。首先,我们将回顾一些基本的数学工具和
该书共5章,分别介绍有限元和混合有限元理论基础及其应用。最精彩的是第4和第5章,详细介绍非定常偏微分方程有限元法中的有限元空间和有限元未知解系数向量的降维方法,可将含数十万乃至上千万未知量的有限元迭代方程降阶成为只有很少几个未知量的降阶方程,理论和数值例子都证明了两种降维方法的正确性和有效性。这些降维方法都是作者原创性
保持问题是算子代数和算子理论交叉领域中的重要课题之一.本书共6章,第1章介绍书中涉及的算子代数和算子理论预备知识;第2章给出几类保持相似性的线性映射的刻画;第3章研究Banach空间有界线性算子构成的代数上保持相似性的非线性映射;第4章刻画套代数上的Jordan同态;第5章研究保持几类正交性的线性映射;第6章给出保持算
本书是编者结合长期在教学第一线积累的丰富教学经验编写而成。全书共11章,内容包括:函数、极限与连续、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用、多元函数微分学、二重积分、无穷级数、微分方程、差分方程。本书按节配置适量习题,每章配有总习题。每章末通过二维码链接知识点总结和典型问题选讲视频。书末链接部分
《数学分析讲义》(上、下册)是作者在中国科学院大学授课期间编写的,讲义内容主要参考了华东师范大学数学系编写的《数学分析》,以及国内外一些优秀的教材,并在此基础上作了一些补充。讲义注重分析的几何直观性、理论的严谨和系统性、应用的深入性,以及与后续学科的衔接性。
本书针对非凸变分不等式投影类方法中客观存在的错误,给出修正的理论结果,进而利用投影技术研究上述正则非凸变分不等式与不动点问题、变分包含问题之间的正确关系,从而建立正则非凸变分不等式和不动点问题之间的等价性。利用这种等价性来讨论正则非凸变分不等式的解的存在性,并且利用这等价替代形式来构造解正则非凸变分不等式的投影类迭代算