本书是大学几何学的基础课程教材,是作者在北京理工大学数学系讲授解析几何课程的讲稿基础上编写而成的。它的内容既包含传统解析几何的基本内容和方法,也包含经典几何学的初步内容。传统解析几何的主要内容包含:仿射空间与向量代数,仿射坐标系,空间中平面和直线,空间中的旋转面、柱面和锥面,二次曲线和二次曲面的方程化简,二次曲面的圆纹
本书的翻译和出版为国内读者提供了一个了解信息几何领域知识的媒介,可作为高等院校数学、信息科学等专业本科、研究生教材或学习参考书,也可供从事数学和信息科学等相关学科研究人员参考。希望读者可以通过阅读本书了解信息几何的基础知识、理论框架和应用方法,并进行研究与探讨,用于解决实际问题。
本书内容是几何分析领域优秀的科研工作者所写的综述性报告,文章汇报了几何分析领域的前沿热点。包括包括:紧Kahler流形上复hessian方程的研究、偏微分方程和黎曼几何、不变体系、几何可变体系、瞬变体系和刚片、自由度与辛几何、代数几何和物理中的超弦理论、二维非线性偏微分方程、Ricci流、Gromov-Witten不变
为了应对一种特殊的大型复杂数据集的挑战,拓扑数据分析(TDA)作为应用代数拓扑研究领域的一个分支,在过去几年中对分析处理复杂系统和大数据等领域产生了重大影响。然而在TDA出现前的几十年,应用代数拓扑研究的另一个数据分析子领域已得到发展,它被称为Q分析。据我们所了解,目前市场上很少有著作能够涵盖上述两个应用代数拓扑的子领
本书介绍了等几何分析方法,它包括等几何有限元法、等几何边界元法以及等几何有限元-边界元耦合方法。本书分为9章。第1章为绪论,第2-4章介绍了等几何有限元法的基本理论及其在含贯穿裂纹的薄壳结构、含裂纹和孔洞缺陷的功能梯度薄壁结构和线性热-粘弹性问题中的应用,第5章介绍了瞬态热传导问题的等几何边界元法,第6和7章分别介绍了
《空间-时间-物质》是被誉为20世纪伟大的数学家之一的德国数学家赫尔曼·外尔(HermannWeyl,1885—1955)的名著《空间-时间-物质》(Raum,Zeit,Materie),是黎曼几何与广义相对论领域的著作。1916年到1917年,外尔在苏黎世联邦工学院讲授相对论课程时,力图把哲学思想、数学方法以及物理学
本书重点论述微分几何与共轭…面原理在齿轮啮合传动与运动分析方面的应用。首先以矢量函数…线论与…面论为基础,拓展了密切…面、等距…面、…率并矢等内容,丰富了典型…线与…面的应用实例;然后概括了共轭…面运动的两类特征函数与特征矢量,围绕共轭…面的整体几何与微分几何论述了空间…面运动的形成原理、模型构建与分析方法;最后以弧齿
自然图像、高光谱图像、医学图像、视频以及社交网络数据本质上都属于多模态数据,张量是多模态数据的自然表示形式.近十余年来,张量学习的研究引起了国内外研究者的广泛关注,并取得了一批非常优秀的成果,被广泛应用于机器学习、模式识别、图像处理、计算机视觉、数据挖掘以及社交网络分析等领域。本书从张量的基本概念和代数运算出发,基于多
椭圆曲线密码体制(ECC)是当前主流的公钥密码体制,该体制的安全核心是椭圆曲线离散对数问题(ECDLP)。本书首先对椭圆曲线离散对数及其相关问题,以及它们之间的相互关系进行了探讨,然后主要介绍了椭圆曲线离散对数问题的计算方法,包括通用的平方根算法及其改进、特殊椭圆曲线离散对数的计算方法、指标计算方法的努力、归约到NPC
本书主要从序与拓扑的交叉角度,拓展Domain理论的框架和应用范围,深入讨论sober空间、稳定紧空间与紧pospace、spectral空间与Priestley空间,系统地研究格序结构的关系表示问题,并给出关系表示理论在拓扑、Domain理论、格论中的一系列应用,尤其是一些经典拓扑问题的代数化处理新方法。由此建立了二