本书从传统的机器学习,如线性回归、逻辑回归、朴素贝叶斯、支持向量机、集成学习,到前沿的深度学习和神经网络,如DNN、CNN、BERT、ResNet等,对人工智能技术进行零基础讲解,内容涵盖数学原理、公式推导、图表展示、企业应用案例。本书面向初中级读者,能帮助读者迅速掌握机器学习技术的相关概念及原理。本书内容结合作者多年
机器学习实战:使用R、tidyverse和mlr
随着人工智能技术的发展,人类对智能化服务更加渴望,聊天机器人成为研发热门之一。《智能聊天机器人:核心技术与算法》从聊天机器人所涉及的多个方面出发,先理论后实践,让读者不仅能了解其中的原理,还能自己动手编程。《智能聊天机器人:核心技术与算法》共9章,第1章以该领域的背景知识作为开篇,重点介绍了聊天系统中的主要模块;第2章
本书是一本介绍深度学习理论和实战应用的教程,先从数学基础和机器学习基础出发,按照神经网络的技术发展框架由易到难逐步讲解深度学习的理论,然后再通过实践部分,详细解释深度学习的应用案例,让读者既能了解深度学习理论,又能学会使用深度学习框架,实现自己的深度学习模型。主要内容包括深度学习的发展历史、单层感知器、线性神经网络、B
本书基于丰富的图示,详细介绍了有监督学习和无监督学习的17种算法,包括线性回归、正则化、逻辑回归、支持向量机、核方法、朴素贝叶斯、随机森林、神经网络、KNN、PCA、LSA、NMF、LDA、k-means算法、混合高斯分布、LLE和t-SNE。书中针对各算法均用Python代码进行了实现,读者可一边运行代码一边阅读,从
本书全面讲解PaddlePaddleFluid框架在深度学习领域的应用。全书共15章,分别是PaddlePaddle深度学习开发环境的搭建、PaddlePaddle快速入门、线性回归算法实战、卷积神经网络实战、循环神经网络实战、生成对抗网络实战、强化学习实战、模型的保存与使用、迁移学习实战可视化工具VisualDL的使
本书的主要特色在于知识建模和智能推理技术方面的创新,并基于知识图谱建模和智能推理技术的集成完成了一系列应用软件的开发,直观形象、易学易用。本书是AI3软件的详尽解读,分为AI3普及版(自由拷贝,不限使用)、AI3智能教学版以及AI3专业版(适用于复杂过程工业系统AI应用)。
深度学习已经进入我们的生活,云计算和大数据为深度学习提供了便利。本书主要讲解深度学习中的数学知识、算法原理和实现方法,配套源码、数据集和开发环境。本书共12章。第1章介绍人类视觉和深度学习的联系。第2章介绍深度学习中最为重要的梯度下降算法。第3章介绍卷积函数。第4章介绍计算损失函数所使用的交叉熵、决策树和信息熵。第5章
本书从初学者角度出发,采用理论与实践相结合的方式阐述深度学习的相关知识,包括概率论、信息论、数值优化,以及机器学习中的相关内容。同时包括深度前馈网络、正则化、优化算法、卷积网络、序列建模和实践方法等,并且包含了实际环境中用到的深度学习技术场景,诸如自然语言处理、语音识别、计算机视觉、在线推荐系统等方面的应用,帮助初学者
本书引领读者从操作层面找到进入到VR领域的入口。本书分为三大部分:第一部分为虚拟现实引擎Unity,阐述了Unity基础、Unity脚本程序基础,图形界面系统,粒子系统,物理系统。第二部分为虚拟现实3D建模,通过3dsmax阐述了3D建模基础和3D高级建模方法。第三部分通过一个综合开发案例虚拟样板房的制作带领读者深入了