《线性代数辅导精讲》按照考研数学大纲的要求,以历年考研数学真题中的典型题目及分析详解为主线,内容包含典型方法的归类总结、重要和常用技巧的运用、考生易错点的提示、重点题型的考研预测等.相比其他考研数学辅导图书有以下特色:(1)紧扣大纲要求,精选历年考研真题,分模块分阶段地指导考生科学备考;(2)精心设计本书模块和栏目,辅
本书共五章,内容包括行列式、矩阵、n维向量及其线性相关性、线性方程组、方阵的特征值和特征向量、相似矩阵及二次型等
本书系统介绍了凸优化的理论和方法,包括凸集、凸函数、凸优化问题、对偶问题、无约束凸优化问题的最速下降方法和Newton方法、具有线性等式约束的凸优化问题的Newton型方法和具有不等式约束的凸优化问题的内点法,还介绍了线性半定规划的一些性质和算法,并对目标函数具有可分结构的一类凸优化问题,介绍了基本的交替方向乘子方法.
本书整合一元函数微积分、常微分方程的教学内容,适合理工科各专业的教学。重点在于教学内容的选取与安排便于教学和学生的学习,力求做到可读性与严谨性统一,克服教学学时不断压缩与课程体系形成的矛盾,提高课堂教学质量。本书可供高等院校理工科各专业本科教学选用教材和教学参考书,也可供其他专业师生及工程技术人员阅读和参考。
本卷是集合论的模型分析部分.在第一卷的基础上,本卷的主要任务是将逻辑植入集合论之中,并以此为基础实现三大目标:第一大目标是将同质子模型分析引入集合论,这是一种不同于组合分析的对无穷集合展开分析的基本方法;第二大目标则是建立集合论论域的具有典范作用的内模型——哥德尔可构造集论域,从而证明一般连续统假设和选择公理的相对相容
《集合论导引》共三卷,本书是第一卷,本卷是这本《导引》的开卷。本卷将分成三章来为后续两卷奠定基础。第一章主要是引进集合论的基本公理、基本概念、基本方法以及建立起典型的可数集合的例子,包括自然数集合、整数集合、有理数集合以及彻底有限集合的集合。第二章主要是引进选择公理以及由此建立起来的基数运算律和一些典型组合实例。第三章
本书内容包括:极限与连续、导数与微分、导数的应用、一元函数积分学及多元函数微积分学。在每一模块中均编有应用与实践内容,其中包括高等数学在物理、机械、经济、电工电子、信息技术等方面的应用和数学软件MATLAB的使用。每节配有习题,并将习题答案附于书后。 本书可供高职院校工科类和经济管理类专业的学生作为教材或学习参考
《G-V模糊拟阵》以图论、拟阵、模糊集为基础.主要介绍模糊基与模糊圈的性质、判定和算法,模糊集的秩的性质和算法,模糊闭集、对偶、超平面的性质和公理系统,模糊拟阵的结构,模糊图拟阵等,最后介绍模糊拟阵的一种推广——G-V直觉模糊拟阵.
《高等代数问题求解的多向思维》是作者结合多年给数学专业本科生进行高等代数考研辅导的有关内容,和长期的探索积累编著而成的。《高等代数问题求解的多向思维》精选包括多项式、行列式、线性方程组、矩阵、二次型、线性空间、线性变换、λ-矩阵、欧几里得空间等内容的典型例题,给出多种证法或解法,反映高等代数各类知识点之间的有机联系,注
本书架构上分为函数极限、微分方程、多元微分学,多元函数积分、级数4个部分,章节设计由浅入深逐步递进。在微分方程部分,包括微分方程的求解及应用。多元微分学部分,包括多元函数的概念、求导方法、多元函数偏导数的意义。多元函数积分学部分,包括重积分、二重积分和三重积分、曲线积分和曲面积分。级数部分,包括级数内容。教材每节后均配
本书内容包括:常微分方程、线性代数、概率论与数理统计、线性规划、数学建模概述。在每一模块中均编有应用与实践内容,其中包括高等数学在物理、机械、经济、电工电子、信息技术等方面的应用和数学软件MATLAB的使用。每节配有习题,并将习题答案附于书后。 本书可供高职院校工科类和经济管理类专业的学生作为教材或学习参考书使用
本书根据高等教育“线性代数”课程的教学要求,以“弱化证明、掌握概念、强化计算和应用”为指导思想,体现普通本科院校线性代数课程的教学应以应用为目的。本书以矩阵贯穿全书,章节之间联系紧密,包括行列式、矩阵、向量的线性相关性、线性方程组、特征值与特征向量、二次型等内容。本书结构完整、逻辑清晰、通俗易懂,有利于学生理解线性代数
为了适应应用型、实践型人才目标的要求,以“弱化证明、掌握概念、强化应用”为指导思想,遵循“以应用为目的,以必须够用为度”的原则编写本书。本书内容共分六章:第一至三章是数学基础,重点培养学生的数学素养;第四至五章为应用数学,体现数学与专业接口、为专业服务的特点,提高数学应用能力;第六章内容体现数学应用,拓展学生思维,提高
布尔巴基学派的序、代数、拓扑三大母结构是现代数学的基础.利用计算机证明辅助工具,可以完整构建这三大母结构的形式化系统.《公理化集合论机器证明系统》利用交互式定理证明工具Coq,实现Morse-Kelley公理化集合论形式化系统,包括对该体系中8个公理(含选择公理)和1个公理图示以及全部181条定义或定理的Coq描述,其
图像信号本质上可以看作是关于一组基向量的稀疏表示,而稀疏表示是获得、表示和压缩图像信号的一种强有力的工具。从稀疏约束的角度来划分,可以将稀疏表示分为五类,分别为(1)基于最小化L0范数的稀疏表示,(2)基于最小化Lp(0<p<1)范数的稀疏表示,(3)基于最小化L1范数的稀疏表示,(4)基于最小化L2,1范数的稀疏表示
本书共分三卷,本卷为第二卷.第一卷的内容主要有:实数基本理论;一元微积分学,包括极限、连续、级数、微分、复数、积分等.在此基础上,本卷主要介绍拓扑空间(特别是度量空间、欧氏空间)及映射的极限与连续的映射(包括压缩映像原理);多变量函数微分学;重积分;流形及微分形式;流形(特别是曲线与曲面)上微分形式的积分;向量分析与场
为南开大学代数类课程教材系列的重要一环,本教材具有整套系列教材的共同特色。由于我们一直将代数学看成一个整体看待,因此我们的教材特别注重与前期课程与后继课程的衔接与统一。本教材特别注重讲清楚数学思想,因此在引出定义和定理前一般会加入很多解释性的按语,或者在定理后面加一些注记。本教材的习题是我们花了大量心血精心设计而成的,
如何描述一群人和另外一群人的距离呢?知音与朋友的数学差异是什么?足球比赛的冷门不断会刻意突出其怎样的运动本质?基于大数据的客观世界真的会与数学形成对立吗?我们经常说的"度"的数学内涵是什么?为什么会产生约等式逻辑?你能证明人单腿站立不稳当吗?多米诺效应隐藏着人们什么样的虚假比喻?围棋完美化的数学途径是什么?为什么大众更
这本教材覆盖了许多不同的数学领域。这本书包括以下内容:平面几何与立体几何的基本知识;极限展开以及它在几何中的应用;有限样本空间中的概率的基本知识;以及对集合论和逻辑的初步介绍。尽管这些内容是相对独立的,本书可以帮助读者看到并理解不同数学领域之间的联系。每章的开头部分,有关于学习本章所需的预备知识的描述。
环论是抽象代数学中的一个重要的分支。环的结构、分类与表示是环论中的具有根本性的研究课题。在环论的发展过程中,人们先后提出了很多种环的概念。作为抽象的代数概念,各种环类都需要具体的例子来支撑相关的理论。本书以环论中一些重要的环与模为研究对象,比较系统地介绍它们的定义、性质以及丰富的具有代表性的例子,特别是通过具体的例子展