本书是作者在十多年收集、整理资料和进行考研数学一辅导的基础上,通过对历年试题的精心分析研究,并结合授课体会和学生的需要全新编写而成的。通过认真分析研究、了解、消化和掌握历年试题,帮助考生发现命题的特点和趋势,找出知识之间的有机联系,总结每部分内容的考查重点、难点,归纳常考典型题型,凝练解题思路、方法和技巧,明确复习方向
《高等数学教学同步指导与训练》(下)参照同济大学数学系编《高等数学》(下册)(第七版)的基本内容,以每节两学时的篇幅对高等数学进行教学设计,全书共计46节92学时.除习题课外,每节均由教学目标、考点题型、例题分析组成.教学目标根据高等数学教学大纲的基本要求编写,目的是把教学目标交给学生,使学生了解教学大纲和教师的要求,
本书以教育部高等教育面向21世纪教学内容和课程体系改革计划为编写依据,结合近年来国内外线性代数教材改革、发展的形势及取得的教学成果编写而成。全书共6章,主要内容为行列式、n维向量、矩阵、线性方程组、矩阵对角化与二次型、线性空间与线性变换。本书内容完整,叙述简明,习题题型多样化。
本书旨在系统介绍非光滑优化理论与方法,全书共十二章。第1章为绪论,介绍非光滑优化应用背景和常见的非光滑函数类;第2章和第3章分别介绍凸集和凸函数的基本概念及有关性质;第4章介绍集值映射的基本概念和性质;第5章介绍集合的几种切锥和法锥及其基本性质;第6章引入凸函数的次微分,介绍次微分的性质和特殊凸函数的次微分表达式:第7
本书主要介绍了群胚、拟群、箭图、乘子、环扩张以及与之相关的各类Hopf型代数的基本概念和理论,尤其讨论了弱乘子Hopf代数概念的发展、构造以及对偶理论.本书内容由浅入深,既有理论又有新的应用,反映了近十几年来在代数量子群(胚)理论中国际**的研究成果,是国内外反映该研究领域的专著之一.
本书是编著者根据多年讲授离散数学的经验和兴趣写成的,同时征求开设离散数学的部分院校的意见和建议,并参考国内外相关教材,结合自身教学科研实践编写而成。本书力求做到体系完整、通俗易懂、简明扼要。本书围绕着各种基本的离散数学的特点、理论及应用进行展开,目的是培养学生对离散数据的掌握,培养离散数学的逻辑抽象和思维能力,以进一步
x本书论述代数学及其在现代数学和科学中的地位,高度原创且内容充实。作者通过讨论大学代数课程,如李群、上同调、范畴论等,阐述每个代数概念的起源与物理现象及其他数学分支之间的联系。
非线性方程组在国防、经济、工程、管理等许多领域有着广泛的应用。本书系统介绍非线性方程组的数值方法和相关理论,主要内容包括:牛顿法、拟牛顿法、高斯-牛顿法、Levenberg-Marquardt方法、信赖域方法、子空间方法、非线性最小二乘问题、特殊非线性矩阵方程等。
本书是代数学的入门读物,主要讨论基本概念与方法.从直观例子分析到抽象概念引入,循序渐进,不断深化.全书共24讲,前12讲主要对代数学的基础性内容进行梳理,包括群、环、域、模及向量空间与线性映射的定义与例子,以及一些基本结论的推导;后12讲介绍代数学中的一些经典构造方法,包括张量代数、对称代数、李代数的泛包络代数、量子群
本书是前苏联著名数学家为普及数学知识撰写的一部名著,用及其通俗的语言介绍了现代数学各个分支的内容,历史发展及其在自然科学和工程技术中的应用。本书内容精炼,由浅入深,只要具备高中数学知识就可阅读。全书共20章,分三卷出版。每一章介绍数学的一个分支,第一卷的内容包括数学概观、数学分析、解析几何和代数。
本书是作者近年来的一些研究成果的总结,并以此为主线,系统介绍国内外关于算子代数上的Lie映射与Jordan映射相关问题的研究成果及进展。共分七章,内容包括预备知识、三角代数上的非线性Lie映射、vonNeumann代数上的非线性*-Lie映射、算子代数上的Lie三重映射、算子代数上的Jordan映射、套代数上的双导子与
本书主要介绍和总结了印度著名数学家Ramanujan提出的mocktheta函数,它是目前国际上模形式领域,特别是半整权模形式领域中讨论和研究的热点问题,新思想、新方法、新问题和新成果不断涌现。这一领域的研究与数论、数学物理、弦理论以及黑洞理论等学科分支都有着重要的联系。本书主要内容涉及mocktheta函数的定义、R
本书是数学与应用数学专业选修课教材,全书共九章和两个附录。九章分别是多项式、行列式、线性方程组、矩阵、二次型、线性空间、线性变换、λ-矩阵、欧几里得空间,每章包括知识点归纳与要点解析、典型例题、精选习题三部分内容。两个附录分别为精选习题提示及参考答案、大学生数学竞赛试题及参考答案。
本书是作者为中国科学院大学一年级本科生讲授线性代数课程时,根据作者本人授课的课堂录音和学生的课堂笔记整理修订完善而成的。作者吸收借鉴了柯斯特利金《代数学引论》的优点和框架,在内容的选取和组织,贯穿内容的观点等方面都有特色。本书分为三卷,本册为第二卷,主要内容包括:向量空间,线性算子,内积空间,仿射空间与欧几里得仿射空间
本书是《有向几何学》系列研究成果之三。在《平面有向几何学》等研究成果的基础上,创造性地、广泛地运用有向面积和有向面积定值法,对平面有关问题进行研究,得到了一系列的有关三角形内、外侧多角形,多角形左、右侧多角形,垂足多边形,圆锥曲线内、外切多角形,线型三角形等有向面积的定值定理,揭示了这些定理与经典数学问题、数学定理和一
本书是为数学专业学生撰写的一本探究式学习方法的著作,为高等院校课程改革提供一定的探索经验。主要内容包括:第1章简单介绍新生研讨课的特点和要求,以及探究式学习的基本方法,给出数学学科与数学专业的简介;第2章阐述数学是什么,介绍数学文化、数学趣事、数学思想与数学简史;第3章和第4章是不等式及其应用探究式学习方法专题案例选讲
给出复指数系E(Λ)={e}在C中或C[-R,R]中可逼近的一个充分必要条件,以及不可逼近的情况下,复指数系E(Λ)={e}的极小性,一致极小性和双正交系的求法,对={}加上何种条件,使得复指数系E(Λ)={e}成为框架(Riesz基、riesz框架、bessel框架),其中C是所有在实轴R上连续,且当t趋向无穷时,f
本选题属于本套教材的基础知识类,2007.2第一版,销售14000册。全面修订各章内容,比例20%。内容包括复数与复变函数、解析函数、复变函数的积分、级数、留数、共形映射、傅里叶变换、拉普拉斯变换。本书可作为高等院校理、工、经管等本专科学生的教材使用,也可供相关人员参考使用。
数学教育的根本目的在于提升数学素养.本书紧紧抓住数学学科的特点,通过提炼和挖掘,对隐藏在数学知识之中最基本、**广泛性和包摄性的数学思想方法进行了多角度、深层次的介绍,力求能体现数学的精神与态度、观点与文化.所选取的主要内容包括化归、抽象、公理化、含情推理、算法等.全书在编写思想上,一方面注重教学内容的系统性,以适应教
本书介绍国际前沿学科的研究方向:各种Hopf代数和量子群结构的离散型量子形变与Hom化理论。包含DoiHom-Hopf模的基本概念、Maschke型定理、可分函子、仿射准则、量子Yang-Baxter方程的解及Hom-Yetter-Drinfeld模范畴的对称性与u条件、Hom-量子群胚及其表示等。内容由浅入深,既有理