本书是一部系统地介绍Nabla离散分数阶系统理论的专著,其中包含了许多原创性成果和未解问题.针对Nabla离散分数阶系统,本书讨论了其稳定性分析和控制器设计问题,为了便于验证所提理论,还介绍了数值实现方法.本书由浅入深、循序渐进地展开,虽不是字斟句酌的教科书,但所给出的结论均提供了巧妙且严谨的证明,既介绍了灵感来源,提
本书以反应扩散方程的基本理论为基础,以生物、物理和化学等自然学科为背景,将几类主要的微分方程、积分方程作为研究对象,介绍非局部反应扩散方程的基本理论、基本方法以及一些常见的应用。内容包括非局部反应扩散方程的行波解、对应柯西问题解的适定性以及斑图动力学理论;主要用到的方法有Leray-Schauder度理论、稳定性分析、
本书主要研究了高维非线性系统的复杂动力学、全局分岔和混沌动力学。针对研究高维非线性动力系统数学理论过于抽象、难于在工程实际中应用的问题,以典型的工程振动实际问题为例,通过建立高维非线性动力学模型并发展相应的理论解决方法来启发读者。本书在内容的安排上由浅入深、循序渐进,从理论推导到工程实例,便于读者自学。
本书是“全国大学生数学竞赛丛书”中的一本,由佘志坤主编,全国大学生数学竞赛命题组编,是全国大学生数学竞赛工作组推荐用书。全书分上、下两册,本书为下册,共4章,内容包括向量代数与空间解析几何、多元函数微分学、多元函数积分学、无穷级数。每章内容由竞赛要点与难点、范例解析与精讲、真题选讲与点评、能力拓展与训练、训练全解与分析
第1-12章是《测度论基础与高等概率论学习指导》上册,其中第1,2章是预备知识,第3-12章是测度论基础。作为学习指导用书,本书与同名作者编著的《测度论基础与高等概率论》配套,目的是部分地解决初学者学习“测度论”和“高等概率论”等课程的过程中在做题环节常常无从下手、方向感差、不知论证是否严谨,解答是否完整等问题。与教材
第1-12章是《测度论基础与高等概率论》上册,其中第1,2章是预备知识,第3-12章是测度论基础。本书强调背景知识的深刻描述、基本概念的自然引入、科学素养的悄然渗透,从谋篇布局到板块转换,直至例题编制都精雕细琢,从章节引言到问题切人,直至定义、引理、命题、定理前的导语都字斟句酌。为避免初学者从初等概率论到高等概率论因跃
本书介绍了廣方复原的CFOP四步法以及如何利用故事法快速记住其中涉及到的公式。让读者在充满趣味的阅读中牢记魔方公式,让所有人都能学习魔方,成为魔方速拧的高手。
本书是Fred等三个美国流行病学模型专家、数学家合著的MathematicalModelsinEpidemiology一书的中译本。内容分流行病学的基本概念(包括各种类型的仓室模型、地方病模型、流行病模型、异质混合模型、媒介传播的疾病模型),特殊疾病的模型(包括结核病模型、艾滋病病毒/艾滋病(HIV/AIDS)模型、流
法国数学家笛卡儿提出被称为现实中不存在的“想象中的数”。这就是高中数学中涉及的“虚数”概念。虚数有何奇妙之处呢?无论是正数还是负数,平方之后必然为正;而虚数则是“平方为负”,这样的数在哪里都找不到。为什么要学习虚数呢?这是因为在数学中虚数发挥着极其重要的作用,如果没有虚数,那数字的世界就不完整了。而且即使是对于解析微观
本书是普通高等教育“十一五”***规划教材。全书系统介绍了群、环、域的基本概念与初步性质,共分为三个部分。第一部分讲述群的基本概念与性质,除了通常的群、子群、正规子群及群同态的基本定理外,还介绍了群的应用。第二部分包括环、子环、理想与商环的基本概念与性质,特别讨论了整环的性质。第三部分讨论了域的扩张的理论。
本书介绍丛代数研究的理论基础和部分专题,其中,基础部分,畚重从代数方法和组合方法两方面介绍丛代数的结构;专题部分,介绍丛代数理论与数学各个方面(包括拓扑、几何、表示论、数论、矩阵论等)的联系。在一些专题的介绍M,指出了目前理论的研究进展和面临的问题。
本书以反散射理论、Riemann-Hilbert(RH)方法和非线性速降法为工具,系统分析散焦NLS方程在有限密度初值下解的长时间渐近性和孤子分解,主题部分取材于Cuccagna,Jerkins和作者**研究成果。内容主要包括散焦NLS方程初值的RH问题表示、RH问题的可解性、在孤子区域中的孤子分解和在无孤子区域中的长
本书是在2015年科学出版社出版的《数学模型及其应用》(第二版)基础上吸取了读者和专家的意见修订而成。本书主要内容有绪论、初等模型、方程模型、预测模型、评价模型、优化模型、图论模型、概率模型、统计模型、高教社杯全国大学生数学建模竞赛真题等,每章后附相关习题,部分章后附有常用词汇中英文对照。本书完成教学约需40~60学时
《变分分析与应用》是BorisS.Mordukhovich教授在变分分析与非光滑优化领域的**专著。本书主要在有限维空间中对变分分析的关键概念和事实进行系统和易于理解的阐述,这部分内容包括一阶广义微分的基本结构、集合系统的极点原理、增广实值函数的变分原理、集值映射的适定性、上导数分析法则、集值算子的单调性和一阶次微分分
郭柏灵论文集第十六卷收集的是郭柏灵先生发表于2018年度的主要科研论文,涉及的方程范围宽广,有确定性偏微分方程和随机偏微分方程,研究的问题包括适定性、爆破性、渐近性、孤立波等等。这些论文具有很高的学术价值,对偏微分方程、数学物理、非线性分析、计算数学等方向的科研工作者和研究生,是极好地参考著作。
本书从孩子们感兴趣的数学知识出发,以代数(数论)和几何为基本知识点,阐述了运算、逻辑、证明、归纳、类比、递归、数形关联等简单、实用而经典的数学思维,向读者们展现数学丰富多变的形式之美、简洁精确的逻辑之美、数形结合的奇妙之美、解答万物奥秘的创造之美。作者力图以孩子们能读懂、能理解、感兴趣的语言和形式,展现数学的非凡魅力,
《矩阵之美·基础篇》从线性变换的角度对矩阵的诸多重要概念进行了新的梳理。具体而言,第1章给出了矩阵的由来,指出矩阵是表达自然界中线性变换的最为自然的工具;第2章讲述了线性变换在一组基下的矩阵表达,从而引出矩阵相似的概念;第3章结合数的发展从特征分析的角度给出了一个矩阵可能包含的线性变换类型;第4章着重阐述
本书以通俗的文字深入浅出地介绍了加、减、乘、除等算术运算的速算方法,内容包括加减法速算、乘法一口清、两位数乘法速算、两位数乘多位数速算、多位数乘除法速算、九宫速算法。其中,乘法的剪刀积方法、梅花积方法、九宫速算法等内容是作者对速算理论的最新贡献。 本书实现了传统与创新融合、理论与实用兼顾、模块化与整体统一,可供中小学生
钱敏先生1927年3月出生于江苏无锡。1944年至1946年就读于成都金陵大学,1946年至1949年就读于清华大学,1949年毕业后留校担任助教。1950年至1951年到北京大学学习,1951年至1952年任燕京大学助教,1952年入职北京大学,先后担任讲师、副教授、教授、博士生导师,1997年6月退休。2019年逝
本书内容是几何分析领域优秀的科研工作者所写的综述性报告,文章汇报了几何分析领域的前沿热点。