数论是一门研究整数的历史悠久的学科,对数学思维的培养与训练有特殊的作用。初等数论是一门重要的基础课,本书将初等数论的核心重点知识前移,用浅显易懂的方式呈现;在逻辑与思维上,尽量由浅入深;重点介绍通识方法与技巧,淡化特殊技巧,注重思想方法的学习。《BR》全书分为六章,内容包括整除与同余、二次剩余与原根、不定方程、素数分布
本书主要从序与拓扑的交叉角度,拓展Domain理论的框架和应用范围,深入讨论sober空间、稳定紧空间与紧pospace、spectral空间与Priestley空间,系统地研究格序结构的关系表示问题,并给出关系表示理论在拓扑、Domain理论、格论中的一系列应用,尤其是一些经典拓扑问题的代数化处理新方法。由此建立了二
本书以组合数学中的存在问题和计数问题为主线展现理论之美,从满足一定条件的排列组合的存在性入手,介绍计数方法和计数工具,将组合数学运用到与生活密切相关的网络安全实例中,展现其应用之美。全书分为7章,介绍了排列组合概念与方法、特殊计数、母函数原理与应用、递推关系和容斥原理计数方法,以及鸽笼原理和Polya计数定理。本书将合
本书为首批***一流本科课程数学分析的配套教材,分上、下两册出版。本册是上册,共8章,主要讲述一元函数微积分的内容,包括集合与函数、数列极限、函数极限与连续函数、导数与微分、微分中值定理及应用、不定积分、定积分、反常积分。本书每节选用了适量有代表性和启发性的例题,还配有足够数量的习题,其中既有一般难度的题目,也有较难的
本书主旨是以能量临界Schrodinger方程、聚焦非线性Klein-Gordon方程为范例,向读者介绍近年来非线性色散(波)方程研究中派生的Bourgain能量归纳法、陶哲轩I-团队的相互作用Morawetz估计及其局部化技术、Kenig-Merle在色散框架下发展的变分原理与刚性方法。主要涉及非线性色散方程的物理背
本书是《矩阵半张量积讲义》的第四卷。内容包括两个部分:①一般有限集合上的动态系统的建模与控制,主要介绍有限集(包括有限环与有限格)上的动态系统。②跨维数欧氏空间的拓扑结构、等价性与商空间、跨维数动态系统及跨维半群系统的建模与控制。矩阵半张量积为这两类系统的研究提供了有效的工具。本书所需要的预备知识仅为工科大学本科的数学
本书介绍了移动网格方法的历史和现状,作者根据这几年对移动网格方法的一些研究体会,写成此书。本书研究的移动网格方法要做的就是保持单元或节点数不变而通过重新分布节点位置实现自适应目标。特别地,我们将把动态网格与求解过程结合起来,用最适合求解问题的方式来生成网格,即在解的梯度大的地方网格自动加密,而在解的梯度小的地方网格自动
你是擅长数学还是害怕数学呢?可能有很多人对数学持有这样的印象——“不知道在学校学到的数学有什么用”。在现代社会里,各种各样的数学工具非常丰富。本书对其中的“对数”和“向量”这样非常实用的工具进行介绍。《BR》“对数”作为可以简化计算的工具在16世纪就已诞生,在没有电子计算机的时代,对数成为自然科学发展的基石。到今天,对
本书主要内容包括偏微分方程基础知识、Sobolev空间基本知识、Galerkin方法、有限元方法及其误差估计、泊松问题的其他数值方法、不可压缩Navier-Stokes问题有限元应用、修正的特征有限元方法和随机不可压缩流问题全离散有限元方法。有些章末附有课后练习,是对书中重点内容的升华和延伸。本书既有经典数值方法和理论
本书按照工科学生数学建模能力培养要求编写,以巩固学生数学基础知识、培养学生专业复杂问题分析能力、增强学生计算软件应用能力,以及训练学生的实践能力和创新能力为目的,通过基础知识讲解、基本技能训练和应用创新实践等环节深入浅出地介绍了专业学科领域里的数学建模基础知识、相关计算软件的使用方法、复杂问题的研究方法和科技论文写作等
本书专著所涉及的,是"半群字的代数组合学"的如下几个课题:"正则,r-正则语言","析取,r-析取语言","若干代数码"以及"正则语言和析取语言的其它广义"等。
线性代数是大学数学教育中必修的一门重要基础课程.编者依据最新的本科数学基础课程的教学要求,将多年的教学经验有机地融入本书的编写中,深入浅出,简明易懂.全书共6章,包括行列式、矩阵、矩阵的初等变换与线性方程组、向量组的线性相关性、相似矩阵及二次型、线性空间与线性变换.各章均配有适量的习题,书末附有习题答案,供读者参考.本
本书比较系统地论述常微分方程定性理论的基本知识,既有经典理论,又有现代新方法。全书共有五章,分别是微分方程基本定理、稳定性基本理论、周期微分方程、自治系统定性理论、分支理论初步。各章的每一节均配有适量的习题。
本书系统地梳理并总结国内外同行专家近年来在偏序集或格上的模糊联结词和聚合算子方面的研究成果。全书共5章,主要包括:预备知识;偏序集或格上的三角模和三角余模以及它们诱导的模糊蕴涵和模糊余蕴涵的基本性质;单位闭区间上的一致模的分类及几类特殊一致模的特征;有界格上一致模的构造与表示,一致模诱导的模糊蕴涵和模糊余蕴涵的特征及关
本书系统介绍了群、环、域三种代数系统的基本理论、性质和研究方法。本书参考了大量国内外相关教材、专著、论文文献,并结合作者多年来在近世代数教学中的实践经验编写而成。本书脉络清晰,内容深入浅出,通俗易懂。全书共五章,第1章是基础知识。第2-4章包含群、环和域的基本内容。第5章对环做了进一步的讨论。每节都配有适量的习题,其题
本书作为高等数学课程的伴学用书,系统地提供学习方法指引,优化学习航线,从学习者的视角,采用探究式方法,突破高等数学的重难点问题,深挖主要公式、定理之间的内在联系和基本原理,图文并茂地通俗化诠释知识的内涵本质,精选典型习题进行针对性训练,提升读者对课程内容的学习效果和理解深度。为了便于读者理解记忆相关知识,还在各章节重难
本书介绍与大学数学基础课程(高等数学、数学分析和常微分方程,也包括一小部分线性代数)相关的应用问题,主要是这些课程在数学和物理中的应用,希望能通过这些应用问题提高学生学习大学数学课程的积极性。本书中的应用问题有一部分很简短,可作为简单的阅读材料,也有一些有相当难度,可作为探索内容。
本书主要介绍利用三个函数(完整二次函数、负高次幂函数、时间累计函数)求解现实曲线(数据)相应函数的方法,即解决现实函数的建立问题。前三章分别讨论三个函数的基本性质,为函数求解及函数使用提供基础性依据。后三章分别介绍现实中可能的三类函数,即理论函数、近似函数、经验函数的求解方法。每章均分别以充实的例子演示各类函数的具体求
本书为数学分析的学习指导书,是丁彦恒、刘笑颖、吴刚编写的《数学分析讲义》第一、二、三卷的配套用书。主要内容除了经典的一元微积分、多元微积分、级数理论与含参积分之外,还包括拓扑空间的映射、流形及微分形式、流形上微分形式的积分、向量分析与场论、线性赋范空间中的微分学和傅里叶变换等。为了便于读者复习与自查,每一章(第16章除
《Hilbert型不等式的理论与应用.上册》利用权系数方法、实分析技巧以及特殊函数的理论,系统地讨论了Hilbert型不等式,不仅讨论了若干具体核的情形,更从一般理论上讨论了各类抽象核的Hilbert型不等式最佳常数因子的参数搭配问题,进而讨论了构建Hilbert型不等式的充分必要条件,陈述了Hilbert型不等式的最