本书分为三册。第一册分为6章,内容包括:实数、函数、极限论、连续函数、微积分(一)、微积分(二)、不定积分;第二册分为6章,内容包括:定积分、反常积分、常数项级数、函数项级数、幂级数、Taylor级数、Fourier级数;第三册分为8章,内容包括:多元函数的极限与连续性、多元函数的微分学、隐函数存在定理、一般极值与条件
《计算几何:曲面表示论及其应用》主要研究几何目标在计算机环境内的数学表示、编辑、计算和传输等方面的理论与方法及相关的应用,其中包含连续性方法和离散性方法,书中内容包括计算几何相关的基础理论、多元样条函数的研究方法、局部多项式插值及超值插值、分片有理函数插值、多项式样条空间结构与代数曲线、NURBS曲线与曲面、曲线/曲面
《线性代数》涵盖了教育部制定的大学本科线性代数的教学基本要求的内容.全书共分5章,分别为行列式,矩阵,向量组的线性相关性与线性方程组的解法,特征值、特征向量与二次型,线性空间与线性变换.全书内容深入浅出,层次简洁,注重应用,每章后配有适量习题并按难易程度分类,并在书后附有习题参考答案或提示。《线性代数》可供普通高等院校
《线性代数(第2版)》共分七章,内容包括行列式、矩阵及其运算、矩阵的初等变换、向量组的线性相关性、矩阵的相似变换、二次型、线性空间与线性变换。各章后均配有适量的习题,书后附有习题答案与提示。另外还专门编有与《线性代数(第2版)》配套的辅导书、辅导光盘、作业集等。《线性代数(第2版)》便于教学与自学,可作为高等院校工科和
《高等数学:及其教学软件(上册)(第3版)》是在第一、二版的基础上,根据教育部高等学校非数学类专业数学基础课程教学指导分委员会修订的“工科类本科数学基础课程教学基本要求”,并结合教学实践的经验修改而成。《高等数学:及其教学软件(上册)(第3版)》分上、下两册。上册内容是一元函数微积分和微分方程(共7章);下册内容是多元
《微积分(上)(第2版)》第一版分上、下两册,分别于2004年、2005年出版,作为教材使用效果良好,并被选为普通高等教育“十一五”国家级规划教材,第二版书仍然分为上、下两册,上册主要内容包括极限与连续、一元函数的微分学、不定积分、定积分、常微分方程和实数集的连续性,下册包括多元微积分、级数、含参变量的积分和Fouri
论述了中西古代文化中数学神秘、数学崇拜及数学与原始思维、原始宗教、巫术之间的关系。《数学文化概论》在中西古代数学发展与文化传统的关系中,阐述了数学思维、数学理性、数学价值观在民族文化发展中的作用。对中西古代数学构造、数学家价值观念及数学家群体构成的差异分析,使我们看到古希腊文化、基督教神学、笛卡儿的解析几何、牛顿的物理
本书是结合现行中学数学教学内容及《高等数学教学基本要求》,根据作者多年来讲授高等数学课程的讲义编写而成的。全书共分五章,分别为函数与极限、导数与微分、微分学基本定理与导数的应用、不定积分、定积分及其应用。本书可作为高等学校教材,也可供考研复习使用。
与偏重理论体系完整、推理严谨的理科教材不同,《应用常微分方程(科学版)》侧重从应用的需要出发介绍常微分方程的理论和方法,力求概念准确清晰,理论有据,方法实用,并将这些方法和数值计算、微分方程建模结合起来。《应用常微分方程(科学版)》突出了非线性常微分方程与线性微分方程,隐式微分方程与显式微分方程的差异,介绍了分支、混沌
《多尺度计算方法:均匀化和平均化》针对各类具有多尺度特性的问题给出简化数学处理方法(平均化和均匀化),该方法可用于求解偏微分方程、随机微分方程、常微分方程以及Markov链。全书共分三部分,第一部分为背景资料;第二部分为扰动展开,给出此类问题的共性;第三部分阐述了一些证明扰动方法的理论。每章结束部分的讨论和文献目录中均
本书分两部分,上部为堆垒素数论;下部为指数和的估计及其在数论中的应用。第一部分是关于堆垒素数论方面苏联维诺格拉陀夫院士的研究方法和作者自己的研究方法的总结性论著。在这部分中给予维诺格拉陀夫院士的中值定理以显著的中心地位,并且改进了它。作者把华林问题与哥德巴赫问题的研究方法结合起来,并把华林问题一方面推广到每一加数是整系
《华罗庚文集:数论卷2》共二十章,前六章是属于基础知识,内容包括:整数分解、同余式、二次剩余、多项式之性质、素数分布概况、数论函数等;后十四章是就解析数论、代数数论、超越数论、数的几何这几个数论主要分支的基础部分加以介绍,内容包括:三角和、数的分拆、素数定理、连分数、不定方程、二元二次型、模变换、整数矩阵、p-adic
本书介绍算子代数与非交换Lp空间的基本内容,共分6章。第1章和第2章阐述C*代数的基本理论,包括Gelfand变换、连续函数演算、Jordan分解和GNS构造等内容。第3章和第4章系统论述vonNeumann代数的基本理论,涵盖了核算子、算子代数的局部凸拓扑、Borel函数演算、vonNeumann二次交换子定理和Ka
《数学概观》对高等数学的大部分内容作了简明的、介绍性的论述,全书共分十二章,其中八章分别讨论数论、代数、几何及线性代数、极限、连续性及拓扑学、微分、积分、级数和概率,每章都从基本概念、基本定理开始,一直论述到当前的进展,并附有该学科的历史概况及有关的著名数学家的生平简介,重要参考书。另外还有三章分别讨论数学模型与现实,
量子纠错是量子计算和量子通信得以实现的重要保证.《量子纠错码》介绍量子纠错码的基本数学概念和理论、量子纠错码和经典纠错码之间的密切联系以及构作性能良好量子码的主要数学方法。《量子纠错码》可作为数学、通信、计算和量子物理等专业的大学生、研究生和教师的教材或教学参考书,也可供相关领域的科研人员阅读参考。
《几何画板课件制作教程(第3版)》主要以范例的形式全面介绍新版几何画板软件的新功能、新特点,并结合数学课件特点系统地介绍课件设计开发的方法和技巧。结合开发过程挖掘几何画板的潜在功能及技巧,创意出许多新的知识内容表现方式和方法,将一个二维工具推广到三维空间的应用,极大地丰富了几何画板的创作空间。另外随书光盘中收录了大量的
《复变函数》介绍了复变函数的基本概念、基本理论和方法,包括复数及复平面、复变函数的极限与连续性、复函数的积分理论、级数理论、留数理论及其应用、保形映射与解析延拓等。《复变函数》在内容的安排上深入浅出,表达清楚,系统性和逻辑性强。书中列举了大量例题来说明复变函数的定义、定理及方法,并提供了丰富的习题,便于教师教学与学生自
本书主要研究满足开集条件的自相似集,从Hausdorff测度和上凸密度的计算与估计到其内部结构的理论研究,都有比较全面的阐述。全书共分四章和两个附录。第1章介绍基本定义、符号和基本命题;第2章讨论自相似集;第3章讨论上凸密度;第4章讨论自相似集的结构和相关问题;附录A介绍必要的集合论和点集拓扑的基础知识;附录B介绍必要
《抽象代数1:代数学基础》可作为高等院校数学专业本科生及理工科研究生抽象代数课程的教材,也可供有关科技人员及大专院校师生自学参考。抽象代数(或近世代数)是数学的一个基础学科,也是数学及相关专业的基础课程.南开大学“抽象代数”课程的改革是陈省身生前倡导的南开大学数学专业教学改革的一部分,《代数学基础》是该课程改革后使用的
《应用分支理论基础》详细阐述非线性连续和离散动力系统中的分支理论及其在生物数学、化学反应、神经动力学等领域中的应用。全书共分十章,主要内容有动力系统介绍,拓扑等价性、分支与动力系统的结构稳定性,连续—时间系统平衡点的单参数和双参数分支,离散—时间系统不动点的单参数和双参数分支,n维动力系统的平衡点和周期轨道分支,双曲平