主要内容包括:行列式、矩阵、线性方程组、线性空间、线性变换、特征值与特征向量、欧氏空间、二次型、λ-矩阵与Jordan标准形、矩阵分解。
本书按照“讲清道理,再讲推理”的模式编写,系统、连贯地介绍了行列式、矩阵、向量、线性方程组、矩阵的相似二次型、向量空间与线性变换等内容。考虑到不同学时不同层次的教学需要,书中第7章为选学内容,不会影响教材的系统性。在例题、习题选取方面,本书遵循少而精、难易适度的原则,每章均配有典型例题和习题,书后附有参考答案与提示,并
本书全面系统地介绍了矩阵的主要理论、方法及应用。全书共分九章,内容包括:线性空间与线性变换、内积空间、矩阵的标准形、矩阵的分解、特征值的估计、矩阵分析、矩阵的应用、矩阵的广义逆、非负矩阵。本书适合于需要矩阵知识比较多和比较深刻的理科(数学、物理、力学)和信息科学与技术(电子、通讯、自动控制、计算机、系统工程、模式识别、
这本《线性代数核心思想及应用》由王卿文编著,运用矩阵论研究的新成果对线性代数中的行列式、矩阵论、线性方程组、多项式、二次型、线性空间和线性变换的理论及应用进行综合研究,以展示线性代数的核心思想及处理线性代数问题的简捷、有效、实用的核心技术。本书还特别研究了一般教科书中难以展开讨论的若干重要内容,精心设计和选编了难度相当
《普通高等教育“十二五”规划教材:大学数学(文科类)(下册)》是高等学校文科(包括经管类)各专业的数学教材,分上、下两册,上册含一元函数的微积分和线性代数部分,内容包括初等函数、极限与连续、变化率与导数、积分、线性代数初步、矩阵与线性方程组、矩阵的特征值与特征向量、二次型.下册含多元函数的微积分、常微分方程和概率统计部
这本《流形上的分析》由谢孔彬、谢云鹏译,是根据J.R.曼克勒斯先生所著的AnalysisonManifolds一书译出。原书禀承了作者一贯的写作风格,论述精辟,深入浅出。主要内容包括:第一章复习并扩充了全书所需要的代数与拓扑知识;第二至四章系统论述了n维欧氏空间中的多元微积分,这是对普通数学分析的推广与提高,也是为流形
本书内容涉及Linlcwood.Palcy理论及其在流体动力学方程中的应用两大部分.其一包含了频率空间的局部化、Besov~lhqflOLittlewood—Paley刻画、Bony的仿积分解及仿线性化技术、新型的Bernstein不等式等.其二在Littlcwood—Palcv理论的框架下,建立输运扩散方程解的时空正
本书是根据“高等学校本科教学质量与教学改革工程”的需要,参照高等学校数学与统计学教学指导委员会发布的《理工类本科数学基础课程教学基本要求》,参考《全国硕士研究生入学统一考试数学考试大纲》编写而成的。 全书分上、下册出版,本书为上册。上册内容包括:绪论,函数、极限与连续,导数与微分,微分中值定理与导数的