本书是编者讲授数学分析与数学分析选讲课程十余年经验的总结。全书主要内容包括:函数的极限与连续性、实数的完备性理论、上(下)极限与半连续性、微分与广义微分中值定理、积分理论与方法、级数理论与方法、广义积分理论与方法、凸函数的性质及其应用。本书对数学分析中的一些主要思想与方法、重点与难点进行了专题阐述,对部分内容进行了深化
数理逻辑系统是形式语言、形式语义和证明的三位一体。《数理逻辑引论:计算机科学与系统的天然基础》讨论这类系统的核心思想、重要概念、组成部分、构建方法,以及它们与数学和计算机科学的紧密关系,解释数理逻辑系统中符号化语言、解释、模型等概念,研究递归、迭代、分解组合、模块化、等价替换等处理结构复杂性的方法和技术。正是这些概念、
本书是中山大学中法核工程与技术学院一年级第二学期的数学教材的中文翻译版,包括以下主要内容:平面几何与空间几何基础、极限展开及其在几何中的应用、有限样本空间中的概率基础、对集合论和逻辑的初步介绍.尽管这些内容是相对独立的,但本书可帮助读者看到并理解不同数学领域之间的联系.每章的开头部分,列出了学习该章内容所需的预备知识.
本书是中山大学中法核工程与技术学院二年级第二学期的数学教材,主要包括以下内容:导数和极限展开、有限维向量空间、矩阵、单实变量函数在闭区间上的积分和对广义积分的简单介绍、数项级数、离散概率、凸函数、行列式和线性系统、欧几里得空间。在每章的开头部分,列出了学习该章内容所需的预备知识。书中给出了很多详细解答的例题和方法提要,
本书依据理工类本科高等数学课程教学基本要求,并结合教学实践经验编写而成.融入了课程思政元素,且将“结构分析-形式统一法”贯穿于教材,相比于同类教材,本书增加了部分内容,调整了一些内容的讲述顺序,内容更丰富,系统性更强.《BR》本书在定理的证明和例题的求解之前增加了结构分析环节,展现了思路形成和解题方法设计的过程,突出了
本书是与《大学文科数学(慕课版)》配套的学习指导书,是根据高等学校文科类专业数学基础课程的教学基本要求,结合编者多年的教学经验编写而成的.全书共5章,主要内容如下:函数、极限与连续,导数与微分,不定积分、定积分及其应用,线性代数初步,概率论初步.各章与配套教材严格对应,且各章均包含知识结构、重点与难点分析、典型例题与方
数学物理方程是来源于物理、力学等自然科学及工程技术领域的偏微分方程。本书首先介绍了典型的数学物理模型的建立及二阶线性偏微分方程的分类与化简,然后重点介绍了分离变量法、特殊函数(贝塞尔函数)法、行波法、积分变换法和格林函数法等应用广泛的数学物理方程经典的求解方法,最后简要介绍了某些求解非线性数学物理方程的方法,如Adom
本书系统阐述了波动方程参数反演的理论方法与数值计算方法,内容包括奇异值分解方法、不适定问题的正则化方法、全波形反演的数值优化方法、时间域与频率域声波方程和弹性波动方程的全波形反演。全书理论方法与科学计算并重,不但有严谨的理论推导和算法描述,还有详细的数值算例应用及丰富的图形结果。
本书共4章。第1章为度量空间,讲解度量空间的拓扑结构、度量空间中集合的性质、完备的度量空间。第2章为赋范线性空间,包括赋范线性空间的结构、有界线性算子与泛函、泛函延拓定理、有限维赋范线性空间。第3章为Hilbert空间理论,首先讲解内积空间的构造和标准正交基,然后是Hilbert空间的主要定理,最后是Hilbert空间
本书主要研究无穷维希尔伯特空间框架下的分裂可行性问题。本书以非扩张映射、单调映射、凸分析等非线性泛函分析理论为主要研究工具,系统介绍了分裂可行性问题解的存在性及其逼近方法的**研究结果,其主要内容由作者长期在该领域的研究成果积累而成。