本书以求解非线性波方程的辅助方程法为研究对象,构造辅助方程的Weierstrass椭圆函数解并通过引入Weierstrass椭圆函数转换为Jacobi椭圆函数的转换公式而系统建立了构造非线性波方程行波解的Weierstrass椭圆函数法.主要内容包括一般椭圆方程的Weierstrass椭圆函数公式解、Weierstra
作为此前出版的《非线性常微分方程边值问题》研究内容的后续进展,本书是作者十余年来在常微分方程和时滞微分方程周期轨道方面所作研究工作的总结.在介绍临界点理论和指标理论的基础上,对常用的指标理论和指标理论作出推广,提出和论证了Zn指标理论和Sn指标理论,拓展了应用范围.对不同类型的时滞微分方程通过选定相应的Hilbert空
本书是结合作者多年的教学经验,根据理工科“数学物理方程”教学大纲的要求及数学类、大气科学类等专业的需要而编写的。本书以方法为主线,内容包括典型模型定解问题的建立、方程的分类与标准型、行波法、分离变量法、积分变换法和格林函数法等。在此基础上,介绍了研究偏微分方程定性理论的极值原理和能量方法,探讨了贝塞尔函数与勒让德函数的
本书以反散射理论、Riemann-Hilbert方法、Deift-Zhou非线性速降法和速降法为分析工具,系统阐述这些方法在可积系统、正交多项式和随机矩阵理论方面的应用.主题部分取材于Deift、McLaughlin、Biondini、Jenkins等一些学者近年来**前沿成果.内容主要包括Riemann-Hilber
本书是关于超奇异积分的数值计算及其应用方面的专著,全书共8章:第1章为引言,简要介绍超奇异积分的由来,使读者可以轻松地阅读本书;第2章阐述边界归化方法和典型域上的超奇异积分方程,详细介绍区间上和圆周上超奇异积分方程的引入,以及求解超奇异积分方程的经典方法;第3章介绍超奇异积分的定义,并阐述不同的定义在一定条件下是等价的
"本教材主要内容包括:分析基础:函数,极限,连续;微积分学:一元微积分,多元微积分;向量代数与空间解析几何;无穷级数;常微分方程等高等数学核心内容知识点总结及精选习题。 全书分为11个章节,第4~6章,第6~9章均包括知识点总结及练习、综合例题、自测题和研究生入学试题及高等数学竞赛试题选编等内容,第5章、第10章分别
深水中的Benjamin-Ono(BO)方程是一类非常重要的非线性色散方程,具有广泛的物理背景和应用背景。该类方程存在一类具有有限分式的代数孤立子,并且属于可积系统。本书给出该类方程的物理背景并阐述其怪波解,着重研究几种重要类型的BO方程的数学理论,其中包括在能量空间和Bourgain空间上的整体解的存在性、**性和低
本书基于《普通高中数学课程标准(2017年版2020年修订)》与PISA数学素养测评体系,借鉴教育认知诊断评估理论与技术中的有关认知诊断模型,运用数学教育测量与评价理论中的经典测量理论和项目反应理论等原理和技术手段,对课程标准所界定的六大数学学科核心素养水平的达成进行测量与评价研究,并以此为基础探究数学学科核心素养的实
本书是山东大学数学学院新形态系列教材《高等数学(上册)(慕课版)》配套的练习册.练习册采用一节一练的结构,与配套教材完全对应,涵盖配套教材6章的练习题:函数、极限与连续,导数与微分,微分中值定理与导数的应用,不定积分,定积分及其应用,常微分方程.练习题由易到难、由浅入深,有助于知识点的理解、巩固和掌握,可以满足不同基础
本书严格按照最新《全国硕士研究生招生考试管理类专业学位联考综合能力考试大纲》数学部分的考试要求进行编写,并依循历年考试命题思路、方法和原则,帮助广大考生准确把握考试命题的新动向。本书共分为十一章45讲,详尽解读考试大纲知识点,分析近年考情,指导考生高效复习,在有限时间内获得高分。 本书每部分设有大纲解读和往年真题分析