本套书根据教育部高等学校大学数学课程教学指导委员会的基本要求进行编写,在编写过程中充分吸取和借鉴国内外优秀教材的精华,结合南京邮电大学和南京邮电大学通达学院数学团队多年的教学经验,在配有课程思政内容的同时对教材的深度和广度进行了适当调整。全套书分为上、下两册。本书是下册,为多元函数微积分部分,共5章,包括空间解析几何与
数学建模与实验是将数学理论和专业知识有机结合的有效途径。本书通过案例介绍各种数学建模方法,并运用数学软件实现模型求解,内容包括规划模型、微分方程模型、随机模型、数据处理与统计模型、图论模型、模糊数学模型、层次分析模型等。还介绍了数学软件MATLAB和相关数学建模竞赛。各章后附练习题。本书可作为高等学校数学建模与数学实验
本书主要分为基础知识与应用两个部分.在基础知识部分,系统地介绍了图论的基本概念、理论和方法,具体内容包括图的基本概念、树、图的连通性、平面图、匹配理论、Euler图与Hamilton图、图的着色、有向图、网络流理论以及图矩阵与图空间,共十章.在应用部分,主要介绍了近年来图计算方面的一些典型应用和系统,具体内容包括无标度
本书重点介绍了回收锥、凸函数的连续性、凸集的分离定理、凸函数的共轭函数及支撑函数、凸集的极及其相关内容。这一部分是分析约束优化问题理论性质尤其是对偶理论的基础工具。为了增强可读性,本书将抽象的概念尝试用简单的例子和直观的图像来表达,以期读者对本书内容有更形象深刻的理解和把握。同时,将知识点与**化方法部分前沿研究内容进
环论是抽象代数学中较为深刻的一部分,亦为结构数学的重要分支之一,按照乘法是否满足交换律,可以被划分为交换环论和非交换环论。自19世纪开始,经过众多数学家的辛勤耕耘,环论在20世纪二三十年代形成抽象而又具有结构性的理论,并渐生诸多应用。本书在前人工作的基础之上,从不同角度对环论的历史进行考察;从思想史角度剖析环论的演化,
本书是根据作者近五年在西南大学教授线性代数及相关课程和从事科研工作的经验,以及阅读科技读物的感悟写成的。本书力求用兼具浅白和科技的语言介绍线性代数中的抽象概念,包括线性方程组、矩阵、向量、特征值与特征向量以及二次型,进而揭开这些概念自身的本质特征和概念之间关系的面纱。本书在内容编排和处理方法上采用更直接、更简捷、更具有
本书论述变指标函数空间理论的**进展。全书内容包括:变指标函数空间和模空间的基本性质;Hardy-Littlewood极大算子在变指标Lebesgue空间、变指标Herz型空间和变指标加权Lebesgue空间上的有界性,以及度量测度空间上的极大算子在变指标空间上的有界性;多重奇异积分算子在变指标空间上的有界性;常指标加
本书以抛物型方程源项反演为主要研究对象,以构造稳定化的数值反演算法为主要目标,对正则化方法的基本理论进行了简要的介绍.全书共6章,内容包括基本概念与引例、反演问题的正则化方法、正则化参数选取的模型函数方法、抛物型方程与方程组中点污染源的数值反演、抛物型方程中时空分离源项的数值反演、基于源项反演的数值微分方法.
本书从图像处理的基本概念出发,整理了若干图像处理中的偏微分方程模型和算法。全书共6章,包括三部分内容:第一部分(第1,2章)介绍基于偏微分方程数字图像处理的基础知识,包括绪论、现有图像去噪模型的数学定义;第二部分(第3,4,5章)详细讨论不同噪声模型下的偏微分方程去噪方法,包括加性噪声去除偏微分方程方法、乘性噪声去除偏
矩阵半张量积是近二十年发展起来的一种新的矩阵理论.经典矩阵理论的**弱点是其维数局限,这极大地限制了矩阵方法的应用.矩阵半张量积是经典矩阵理论的发展,它克服了经典矩阵理论对维数的限制,因此,被称为穿越维数的矩阵理论.《矩阵半张量积讲义》的目的是对矩阵半张量积理论与应用做一个基础而全面的介绍.计划出五卷,卷一:基本理论与