本书围绕黎曼流形优化发展过程中的理论前沿与热点问题,比较全面和系统地介绍了黎曼流形优化的基本原理和应用实践的**成果。全书共7章,分为理论与应用两个部分。理论部分包括黎曼流形内涵、常用黎曼流形及其几何结构、收缩、低秩流形收缩、黎曼最速下降法、黎曼牛顿法、黎曼共轭梯度法、黎曼信赖域法和黎曼拟牛顿法等内容。应用部分包括鉴别
《复变函数》主要讲述单复变函数的基本理论,包括复数与复变函数,解析函数,复变函数的积分理论、级数理论、留数理论和几何理论.《复变函数》注重本科生的教学,也注重复变函数对于科学研究的应用.对于本科生,内容不会过深过难,更适用于大多数院校的本科教学.
《模形式初步》主要探讨模形式的经典面向,包括Hecke算子和L-函数的相关理论.最后两章简介模曲线和模形式的联系.附录提供了所需的分析、几何和数论知识.
《多元微积分及其应用》是美国著名数学家PeterLax与康奈尔大学数学教授MariaTerrell合作的多元微积分教材,作为《微积分及其应用》(中译本见本丛书第32号)的续篇,其内容涵盖了平行于一元微积分的基础部分,包括:向量和矩阵、多元函数的连续性、多元函数的微分及其应用、多元函数的积分、向量值函数在曲线与曲面上的积
《数学分析讲义·第三卷》始于实数的基本理论.接着进入一元微积分学,包括极限、连续、级数、微分、复数、积分等,重视它对现代数学的启迪,适时介绍些抽象概念(如对基的极限),以利于拓展到一般分析学.其次探讨拓扑空间(特别是度量空间、欧氏空间nR)的映射,展开多元微积分学,其中涉及隐函数定理、集合上的积分、流形(特别是nR中的
“离散数学”是研究离散结构及其相互关系的学科,是计算机科学与技术专业的核心基础课程。本书共五篇九章,系统介绍数理逻辑、集合论、图论、代数系统、组合与计数的基本概念和基本原理。本书内容符合新工科教育的要求,满足计算机科学与技术等专业的教学需求,内容体系严谨,叙述深入浅出,证明推演详尽。同时,本书详细介绍相关知识在计算机科
本书涵盖环球城市数学竞赛从1993年至1997年的相关资料,共包括3章.第1章有160道精选试题,包含英文试题和中文译文,按主题分为16组,每组10道试题.第2章包含其他4个进阶试题,并带有详细的讨论、推广及其相关问题的研究,每道问题都由若干个问题与留给有兴趣的读者的一些练习构成.第3章给出第1章试题的详解.
本书是在集作者多年教学经验和教学实践的基础上,通过集体商讨、研究编写而成的。全书共六章:一阶微分方程的初等积分法、线性微分方程组、高阶线性微分方程、基本理论、定性理论初步及一阶偏微分方程初步。本书结合地方高等院校数学专业的实际情况,对相关内容和习题进行了提炼、精简、分类,力图在现有教学课时(48学时)内既能完成教学内容
这是一本教读者微积分轻松入门的读物,也是一本轻松简单适合自学的书。本书语言轻松幽默,通过大量贴切具体的图形图像尽可能生动地介绍微积分各个主题概念的由来,将中学数学与高等数学完美衔接,中间穿插数学史还原数学思想的产生思路,还有常用的高等数学符号趣谈加深读者学习印象,了解微积分发展的来龙去脉。作者总结多年微积分教学经验,用
本书共5章,第1章是简要的预备知识,包括线性代数(矩阵消元法、置换矩阵、Schmidt正交化、镜面反射、分块矩阵的乘法),以及一元多项式的互素与整除;第2章是矩阵的各种分解式,也是对大学阶段线性代数的复习与提升,包括正规矩阵与酉相似、矩阵分解式、Moore-Penrose广义逆以及Hermite半正定矩阵的**幂表达定