<<不用怕--大老李带你玩数学>>是一本面向各年龄层次数学爱好者、以及自认为"数学不好的人”的一本科普书。本书的创作宗旨在于选择有趣且不太为人熟知的数学问题,从有意思的角度切入讲解问题,力求以最浅显和生动的语言,将较为高深的数学知识介绍给读者,使读者不但能理解这些问题,更能获得思路继续研究和赏玩,从而获得更多乐趣。让读
如何描述一群人和另外一群人的距离呢?知音与朋友的数学差异是什么?足球比赛的冷门不断会刻意突出其怎样的运动本质?基于大数据的客观世界真的会与数学形成对立吗?我们经常说的"度"的数学内涵是什么?为什么会产生约等式逻辑?你能证明人单腿站立不稳当吗?多米诺效应隐藏着人们什么样的虚假比喻?围棋完美化的数学途径是什么?为什么大众更
布尔巴基学派的序、代数、拓扑三大母结构是现代数学的基础.利用计算机证明辅助工具,可以完整构建这三大母结构的形式化系统.《公理化集合论机器证明系统》利用交互式定理证明工具Coq,实现Morse-Kelley公理化集合论形式化系统,包括对该体系中8个公理(含选择公理)和1个公理图示以及全部181条定义或定理的Coq描述,其
图像信号本质上可以看作是关于一组基向量的稀疏表示,而稀疏表示是获得、表示和压缩图像信号的一种强有力的工具。从稀疏约束的角度来划分,可以将稀疏表示分为五类,分别为(1)基于最小化L0范数的稀疏表示,(2)基于最小化Lp(0<p<1)范数的稀疏表示,(3)基于最小化L1范数的稀疏表示,(4)基于最小化L2,1范数的稀疏表示
这本教材覆盖了许多不同的数学领域。这本书包括以下内容:平面几何与立体几何的基本知识;极限展开以及它在几何中的应用;有限样本空间中的概率的基本知识;以及对集合论和逻辑的初步介绍。尽管这些内容是相对独立的,本书可以帮助读者看到并理解不同数学领域之间的联系。每章的开头部分,有关于学习本章所需的预备知识的描述。
本书内容包括:常微分方程、线性代数、概率论与数理统计、线性规划、数学建模概述。在每一模块中均编有应用与实践内容,其中包括高等数学在物理、机械、经济、电工电子、信息技术等方面的应用和数学软件MATLAB的使用。每节配有习题,并将习题答案附于书后。 本书可供高职院校工科类和经济管理类专业的学生作为教材或学习参考书使用
本书架构上分为函数极限、微分方程、多元微分学,多元函数积分、级数4个部分,章节设计由浅入深逐步递进。在微分方程部分,包括微分方程的求解及应用。多元微分学部分,包括多元函数的概念、求导方法、多元函数偏导数的意义。多元函数积分学部分,包括重积分、二重积分和三重积分、曲线积分和曲面积分。级数部分,包括级数内容。教材每节后均配
本书内容包括:极限与连续、导数与微分、导数的应用、一元函数积分学及多元函数微积分学。在每一模块中均编有应用与实践内容,其中包括高等数学在物理、机械、经济、电工电子、信息技术等方面的应用和数学软件MATLAB的使用。每节配有习题,并将习题答案附于书后。 本书可供高职院校工科类和经济管理类专业的学生作为教材或学习参考
环论是抽象代数学中的一个重要的分支。环的结构、分类与表示是环论中的具有根本性的研究课题。在环论的发展过程中,人们先后提出了很多种环的概念。作为抽象的代数概念,各种环类都需要具体的例子来支撑相关的理论。本书以环论中一些重要的环与模为研究对象,比较系统地介绍它们的定义、性质以及丰富的具有代表性的例子,特别是通过具体的例子展
本书是重庆大学“高等数学”课程教材体系改革试点工作的配套讲义。在学校领导、教务处及院系领导的长期大力支持下,试点工作进行了二十多年。参加试点教学的学生主要来自物理、力学及计算机专业。参加试点教学的教师同时也进行传统“高等数学”的教学工作。两种教材的教学中使用本讲义的学生对教学的评价一般都要高于使用传统“高等数学”教材的