<<不用怕--大老李带你玩数学>>是一本面向各年龄层次数学爱好者、以及自认为"数学不好的人”的一本科普书。本书的创作宗旨在于选择有趣且不太为人熟知的数学问题,从有意思的角度切入讲解问题,力求以最浅显和生动的语言,将较为高深的数学知识介绍给读者,使读者不但能理解这些问题,更能获得思路继续研究和赏玩,从而获得更多乐趣。让读
如何描述一群人和另外一群人的距离呢?知音与朋友的数学差异是什么?足球比赛的冷门不断会刻意突出其怎样的运动本质?基于大数据的客观世界真的会与数学形成对立吗?我们经常说的"度"的数学内涵是什么?为什么会产生约等式逻辑?你能证明人单腿站立不稳当吗?多米诺效应隐藏着人们什么样的虚假比喻?围棋完美化的数学途径是什么?为什么大众更
布尔巴基学派的序、代数、拓扑三大母结构是现代数学的基础.利用计算机证明辅助工具,可以完整构建这三大母结构的形式化系统.《公理化集合论机器证明系统》利用交互式定理证明工具Coq,实现Morse-Kelley公理化集合论形式化系统,包括对该体系中8个公理(含选择公理)和1个公理图示以及全部181条定义或定理的Coq描述,其
本书主要讲解张量基本概念,它们的代数运算和微分学,以及Riemann流形上的张量及其微积分学,Riemann流形上的微分算子。本书还用大量篇幅讲授张量在连续介质力学和物理中的应用。其中有许多内容是作者30多年的研究生涯中应用张量分析工具,建立相关力学数学模型,发展新的数学方法和数值计算方法的研究成果。
本书系统地介绍流体力学中的基本方程,即:不可压缩Navier-Stokes方程的最新理论和方法,着重介绍Fourier分离方法及其在Navier-Stokes方程中的应用。具体讲,就是用此方法建立大初值整体弱解在范数意义下的最优大时间行为,以及整体小初值强解在范数意义下的长时间渐近行为。本书循序渐进地阐述Navier-
本书在建立应用变分方法研究时标上的共形分数阶微分方程边值问题的工作空间,并应用变分方法研究时标上的共形分数阶微分方程边值问题解的存在性和多解性,拓展了临界点理论在研究时标上的微分方程边值问题中的应用范围,提出了研究时标上的微分方程边值问题的新方法。。微分方程专业的硕士研究生、博士研究生以及广大数学研究者
这本教材覆盖了许多不同的数学领域。这本书包括以下内容:平面几何与立体几何的基本知识;极限展开以及它在几何中的应用;有限样本空间中的概率的基本知识;以及对集合论和逻辑的初步介绍。尽管这些内容是相对独立的,本书可以帮助读者看到并理解不同数学领域之间的联系。每章的开头部分,有关于学习本章所需的预备知识的描述。
本书内容包括:常微分方程、线性代数、概率论与数理统计、线性规划、数学建模概述。在每一模块中均编有应用与实践内容,其中包括高等数学在物理、机械、经济、电工电子、信息技术等方面的应用和数学软件MATLAB的使用。每节配有习题,并将习题答案附于书后。 本书可供高职院校工科类和经济管理类专业的学生作为教材或学习参考书使用
本书架构上分为函数极限、微分方程、多元微分学,多元函数积分、级数4个部分,章节设计由浅入深逐步递进。在微分方程部分,包括微分方程的求解及应用。多元微分学部分,包括多元函数的概念、求导方法、多元函数偏导数的意义。多元函数积分学部分,包括重积分、二重积分和三重积分、曲线积分和曲面积分。级数部分,包括级数内容。教材每节后均配
本书内容包括:极限与连续、导数与微分、导数的应用、一元函数积分学及多元函数微积分学。在每一模块中均编有应用与实践内容,其中包括高等数学在物理、机械、经济、电工电子、信息技术等方面的应用和数学软件MATLAB的使用。每节配有习题,并将习题答案附于书后。 本书可供高职院校工科类和经济管理类专业的学生作为教材或学习参考