本卷收录了吴文俊的MathematicsMechanization:MechanicalGeometryTheorem-Proving,MechanicalGeometryProblem-SolvingandPolynomialEquations-Solving一书.本书是围绕作者命名的数学机械化这一中心议题而
Navier-Stokes(N-S)方程是一种典型的非线性方程,其研究对人们认识和控制湍流至关重要.我们主要利用有限元方法求解不可压缩N-S方程,并考虑如下几个方面的问题:较大雷诺数问题、不可压缩条件、非结构化网格、inf-sup条件和非线性问题.本文主要围绕这些问题提出并实现不可压缩流若干高效数值方法.
本书讲述现代概率论与数理统计所需要的基本测度论知识,包括测度的构造、积分、乘积测度、赋号测度、Lp空间、条件概率与条件期望及Polish空间上的概率测度等.
本书创造性地广泛地运用有向度量法和有向度量定值法,对空间有关问题进行研究,得到了一系列的有关空间有向度量的定值定理,揭示了这些定理与经典数学问题、数学定理和一大批数学竞赛题之间的联系,从而较为系统、深入地阐述了空间有向度量的基本理论、基本思想和基本方法。
本书介绍了变指数函数空间在偏微分方程上应用的一些最新进展,主要内容包括:次临界增长的-Laplace方程弱解的存在性,集中紧致性原理与临界增长的-Laplace方程弱解的存在性,-Laplace半变分不等式问题解的存在性,具-增长的障碍问题解的存在唯一性,变指数增长的椭圆方程组解的存在性与多重性,变指数增长的抛物方程的
本教材是学习泛函分析课程的一本入门教材,是针对中国学生编写的一本英文教材,在选材上吸收了国外的优秀本科生教材的一些精华;在编写上考虑了与中国学生所具备的基础知识衔接性,在充分地反映泛函分析中的核心内容的前提下,突出重点;在内容的处理上,体现了由浅入深,循序渐进的原则,用大量的例题对度量空间、赋范线性空间、线性算子与线性
在Maslov型指标理论的基础上,此书系统介绍近年来的指标理论一些新的发展。Maslov型指标理论适合于研究闭弦理论(周期解),近几年,开弦理论得到了很大的发展,此专著所介绍的指标理论适合于研究开弦理论。最典型的开弦有两种,其一是在辛流形中以拉格朗日子流形为边值的哈密顿系统,例如著名的闸轨道问题(Seifert猜测)。
辛几何是近几十年发展起来的新的重要数学分支。本书是辛几何(新流形)的入门性读物。。全书分为六章,分别是代数基础、新流形、余切丛、辛G-空间、Poisson流形、一个分级情形。前三章是重要的基本概念,后三章论述有关的应用。
本书主要在《关于全面深化新时代教师队伍建设改革的意见》(中发〔2018〕4号)中对教师素质的要求、中国学生核心素养(三维六方面十八要点)要求、师范专业认证、教师资格国考等背景下,对新时代数学专业师范生职前职后数学学科素质培养进行了研究。该书主要对素质、素养、教师素质、教师素养、核心素养等概念进行了阐述,对数学学科核心素
“理解未来系列”一套共7本,本书是其中之一。“理解未来”是未来论坛每月举办的免费大型科普讲座,它邀请知名科学家用通俗的语言解读*激动人心的科学进展,旨在传播科学知识,提高大众对科学的认知。本套丛书是精选的部分现场讲座的文字整理,然后按照不同学科归类分册。 《数学思维》主要介绍数学语言、朗兰兹纲领、黎曼