本书下册包含两章(第15及16章)和三个附录(附录H,I,J)。第15章讲授拉氏和哈氏理论,第16章介绍黑洞(热)力学,包括传统(稳态)黑洞热力学及其后续发展,特别是比较详细地讲解了(弱)孤立视界和动力学视界等重要概念,并对近代有关文献的许多公式给出了详细的推证,附录H讲授Noether定理的证明(包括用几何语言和坐标
流形上的特征值问题(英文版)
偏微分方程是数学学科的一个分支,它和其他数学分支均有深刻的联系,而且在自然科学和工程技术中有广泛的应用。本书主要讲述广义函数与Sobolev空间、偏微分方程的一般理论、椭圆型方程的边值问题、双曲型方程或抛物型方程的初值问题与初边值问题、能量方法、半群方法等内容。以此为提高读者的整体数学素质提供合适的材料,也为部分读者进
《集值极大极小定理与集值博弈问题》主要分为两部分内容:集值极大极小定理和集值博弈问题。《集值极大极小定理与集值博弈问题》分别在向量优化与集优化两种不同准则下,讨论集值极大极小定理,主要内容有集值极大极小定理与锥鞍点、向量集值极大极小问题、向量集值KyFan极大极小定理、非凸的集值极大极小定理与集值均衡问题、几类特殊的集
本书的主要内容是函数空间的广义度量性质及基数函数性质。全书由两部分组成,第一部分介绍紧空间、仿紧空间、度量空间及度量空间的连续映像,第二部分介绍连续函数空间的拓扑结构、基数函数及某些重要的广义度量性质。本书展示了度量空间映像的核心内容及函数空间优美的对偶理论,突出了完全性在探索函数空间收敛性中的作用,把集论拓扑的研究应
本书是为工学各专业研究生学习泛函分析课程编写的教材。全书共分4章,分别介绍实分析基础、距离空间、Hilbert空间、有界线性算子等内容,并在附录里介绍了上述知识的一些延伸内容:Sobolev空间、正规正交基、二次变分问题等。《BR》本书取材精炼,结构紧凑,关注应用,每章末都附有难易适度的习题。在注重培养学生掌握泛函分析
本书通过实例介绍了常用的初级数学建模方法,包括预测预报方法(回归分析、信息时间传递、马尔可夫链、灰色系统、神经网络预测)、关联分析方法(简单相关系数、偏相关系数、通径分析、典型相关分析、主成分分析、斯皮尔曼等级相关系数、独立性检验)、综合评价与决策方法(模糊综合评价、主成分综合评价、因子分析、层次分析法、灰色关联、方差
本书全面而系统地介绍了离散数学的经典理论和方法。内容共分为集合论、代数系统、图论、数理逻辑四篇。第一篇包括集合、关系、函数与无限集合;第二篇包括代数系统、几类典型的代数系统、格与布尔代数;第三篇包括图论基础、树;第四篇包括命题逻辑、谓词逻辑。各篇相对独立而又有机联系,证明力求严格完整。全书取材广泛,内容深入浅出,叙述简
本书是《有向几何学》系列研究成果之三。在《平面有向几何学》等研究成果的基础上,创造性地、广泛地运用有向面积和有向面积定值法,对平面有关问题进行研究,得到了一系列的有关三角形内、外侧多角形,多角形左、右侧多角形,垂足多边形,圆锥曲线内、外切多角形,线型三角形等有向面积的定值定理,揭示了这些定理与经典数学问题、数学定理和一
本书是编著者根据多年讲授离散数学的经验和兴趣写成的,同时征求开设离散数学的部分院校的意见和建议,并参考国内外相关教材,结合自身教学科研实践编写而成。本书力求做到体系完整、通俗易懂、简明扼要。本书围绕着各种基本的离散数学的特点、理论及应用进行展开,目的是培养学生对离散数据的掌握,培养离散数学的逻辑抽象和思维能力,以进一步