本书是在同济大学数学科学学院和西北师范大学数学与统计学院各专业多次讲授空间解析几何课程的基础上形成的,内容包括空间坐标系、向量代数、平面与空间直线、直纹面与旋转曲面、二次曲面、等距变换与仿射变换等。本书结构紧凑,各章节的主要数学思想显著突出,注重展现数学知识的发生过程和数学问题解决的思维过程,强调几何的直观性,努力处理
本书的主要研究内容是在模式识别应用领域中,提出新的基于张量数据的特征提取和分类算法,并且对这些张量型算法进行详细的理论推导和性能分析,在实验中验证所提出算法的优越性。
《微积分》(第四版)共分七章,介绍了经济工作所需要的一元微积分、二元微积分及无穷级数、一阶微分方程等,书首列有预备知识初等数学小结。本书着重讲解基本概念、基本理论及基本方法,培养学生的熟练运算能力及解决实际问题的能力。
《数学分析基本问题与注释》是作者在上海师范大学主讲数学分析**学期课程的教学配套用书.《数学分析基本问题与注释》的主要内容可分为两部分,一部分是针对教材的每一节内容列出了五个基本问题,学生可以在课前预习时参考,通过问题引领,有的放矢地让学生自学教材,理解了这些问题就领会了所学内容.另一部分是作者根据该节内容和所列问题,
本书系统地论述了格代数以及格的子代数性质、构造等理论,介绍了该领域的**研究成果。书中为所述内容提供了全面的论证、详细的运算,也为其在前沿领域中的应用做了准备。全书结构严谨,自成体系。书中第8章给出了作者在格代数领域的一部分成果。
《近世代数》介绍了几类*基本的代数系统。《近世代数》共五章:第1章介绍基本概念,它是后面各章的基础;第2章介绍群的基本理论,主要包括群的概念与性质、几类简单的群、子群、商群,以及群的同态与同构;第3章介绍环的基本理论,主要包括环的概念与性质、理想与商环,以及环的同态与同构;第4章介绍整环里的因子分解理论;第5章介绍域的
本书是在云南财经大学多次使用的微分方程讲义的基础上整理而成的。本书内容包括微分方程模型,常微分方程的基本概念,初等积分法,一阶常微分方程组,高阶线性常微分方程,偏微分方程的概念,线性偏微分方程的Adomian分解法,特征线法、达朗贝尔公式和分离变量法,布莱克-斯科尔斯方程,非线性偏微分方程的Adomian分解法,变分迭
《常微分方程基本问题与注释》是作者在上海师范大学主讲数学专业本科生常微分方程课程的教学与学习配套用书,所采用教材是作者与合作者所编写的《常微分方程》(高等教育出版社).《常微分方程基本问题与注释》的主要内容可分为两部分.一部分是针对教材的每一节内容列出了五个基本问题,供学生课前预习时参考,通过问题引领,有的放矢地让学生
本书是作者结合多年初等数论的教学实践,根据高校初等数论课程的教学大纲,并充分考虑专业理论知识与学生未来就业的实际需要相结合的需求编写而成的。其主要内容包括整除理论、不定方程、同余、数的表示、一元同余方程、平方剩余与二次同余方程、原根与指标。书中例题和习题大部分选自中小学各类数学竞赛试题,且每节节后几乎都附有数学家小故事
中国科学院数学研究所一批中青年学者发起组织了数学所讲座,介绍现代数学的重要内容及其思想、方法,旨在开阔视野,增进交流,提高数学修养。本书的文章系根据2015年数学所讲座9个报告的讲稿整理而成,按报告的时间顺序编排。具体内容包括:三维复双有理几何、图论、双哈密顿系统与可积系统、二维共形量子场论、描述集合论、拓扑量子场论和