本书是作者结合多年初等数论的教学实践,根据高校初等数论课程的教学大纲,并充分考虑专业理论知识与学生未来就业的实际需要相结合的需求编写而成的。其主要内容包括整除理论、不定方程、同余、数的表示、一元同余方程、平方剩余与二次同余方程、原根与指标。书中例题和习题大部分选自中小学各类数学竞赛试题,且每节节后几乎都附有数学家小故事
本书是在同济大学数学科学学院和西北师范大学数学与统计学院各专业多次讲授空间解析几何课程的基础上形成的,内容包括空间坐标系、向量代数、平面与空间直线、直纹面与旋转曲面、二次曲面、等距变换与仿射变换等。本书结构紧凑,各章节的主要数学思想显著突出,注重展现数学知识的发生过程和数学问题解决的思维过程,强调几何的直观性,努力处理
本书的主要研究内容是在模式识别应用领域中,提出新的基于张量数据的特征提取和分类算法,并且对这些张量型算法进行详细的理论推导和性能分析,在实验中验证所提出算法的优越性。
本书根据高等学校理工科本科专业高等数学课程的教学基本要求,结合国家质量工程培养应用型人才的指导思想,借鉴多年的教学实践及近几年的考研大纲编写而成本书结构严谨、逻辑清晰、概念准确,在内容上力求适用、简明、易懂;在例题的选择上力求具有层次性、全面性和典型性,注重理论知识与实际应用相结合,增加生活和工程技术应用相关的知识以提
本书紧扣大学生数学竞赛的大纲,层次鲜明,逻辑性强,知识点全面但不烦琐.全书共10章,包括函数、极限与连续,一元函数微分学,一元函数积分学,空间解析几何与多元函数微分学,多元函数积分学,常微分方程,无穷级数,行列式、矩阵与向量,线性方程组,矩阵的特征值、特征向量与二次型.
《高等数学(高职数字版)》是全国高等院校数字化课程规划教材之一,根据教育部高职高专高等数学课程教学基本要求,同时兼顾高职高专的特点和各专业的需要编写而成。《高等数学(高职数字版)》包含8章内容,分别为函数的极限与连续、导数与微分、中值定理及导数的应用、不定积分、定积分及其应用、多元函数微积分、微分方程、线性代数。每节后
《数学方法论》共七章,在介绍数学方法论的研究意义、研究对象的基础上,阐述数学建模、数学抽象、推理等基本数学思想,在此基础上,阐述数学化归思想、类比、归纳、猜想等数学发现的基本方法及其在数学解题中的应用.同时,《数学方法论》阐述数学美学和数学方法论在数学教育的价值及其教学策略.
本书共分两个部分:拓扑学中的手性和数学走进生物大分子序列。 *部分是一次演讲的纲要。手性就是左右不对称性,是自然界的常见现象,在化学中日益重要。本文介绍了作者和王诗宬教授合作的一个科研课题的来龙去脉。从材料化学家1982年的实验和问题、拓扑学家1986年的回答,提出我们自己的新概念与新问题。解释了所涉及的数学概念,以
本书介绍了从欧几里得、费马、欧拉、高斯以来2000多年中素数研究的重要成果、问题、思想和方法,包括素数有多少、如何识别素数、是否有定义素数的函数等一系列具有重要理论意义和应用背景的问题,并介绍了相关问题至2003年的*记录
本书用现代数学观点阐述常微分方程论中的一些基本问题,全书共五章:基本概念,基本理论,线性系统,基本定理的证明和流形上的微分方程。