本书的主要研究内容是在模式识别应用领域中,提出新的基于张量数据的特征提取和分类算法,并且对这些张量型算法进行详细的理论推导和性能分析,在实验中验证所提出算法的优越性。
本书共分两个部分:拓扑学中的手性和数学走进生物大分子序列。 *部分是一次演讲的纲要。手性就是左右不对称性,是自然界的常见现象,在化学中日益重要。本文介绍了作者和王诗宬教授合作的一个科研课题的来龙去脉。从材料化学家1982年的实验和问题、拓扑学家1986年的回答,提出我们自己的新概念与新问题。解释了所涉及的数学概念,以
本书主要介绍国内外环与代数研究的*成就和发展方向,在*版的基础上修订再版,除删除了一些成旧内容外,增添关于分次环,路代数,箭图表示,有限表示型箭图4章,力图向读者介绍分次环,箭图及其表示*基本的知识,使之能够了解和进入环与代数当前研究的一些非常具有活力的领域。在新增部分,我们将介绍分次环,分次摸,分次Artin环,Sm
本书紧扣大学生数学竞赛的大纲,层次鲜明,逻辑性强,知识点全面但不烦琐.全书共10章,包括函数、极限与连续,一元函数微分学,一元函数积分学,空间解析几何与多元函数微分学,多元函数积分学,常微分方程,无穷级数,行列式、矩阵与向量,线性方程组,矩阵的特征值、特征向量与二次型.
《高等数学(高职数字版)》是全国高等院校数字化课程规划教材之一,根据教育部高职高专高等数学课程教学基本要求,同时兼顾高职高专的特点和各专业的需要编写而成。《高等数学(高职数字版)》包含8章内容,分别为函数的极限与连续、导数与微分、中值定理及导数的应用、不定积分、定积分及其应用、多元函数微积分、微分方程、线性代数。每节后
《数学方法论》共七章,在介绍数学方法论的研究意义、研究对象的基础上,阐述数学建模、数学抽象、推理等基本数学思想,在此基础上,阐述数学化归思想、类比、归纳、猜想等数学发现的基本方法及其在数学解题中的应用.同时,《数学方法论》阐述数学美学和数学方法论在数学教育的价值及其教学策略.
本书介绍了从欧几里得、费马、欧拉、高斯以来2000多年中素数研究的重要成果、问题、思想和方法,包括素数有多少、如何识别素数、是否有定义素数的函数等一系列具有重要理论意义和应用背景的问题,并介绍了相关问题至2003年的*记录
本书用现代数学观点阐述常微分方程论中的一些基本问题,全书共五章:基本概念,基本理论,线性系统,基本定理的证明和流形上的微分方程。
本书是根据理科数值逼近教学大纲要求及学科发展需要编写的,全书共6章,包括绪论、项式插值、曲线曲面的拟合、正交多项式与函数逼近、数值积分、有理逼近介绍。本书以浅显的方法讲解理论,并配以大量的图例进行说明,力求做到让数值逼近的理论知识变得通俗易懂。
在采用优化方法解决实际工程与管理问题时,由于实际问题本身的复杂性,模型中不确定参数的精确可能性分布通常无法获得。《参数可信性优化方法/运筹与管理科学丛书28》基于2型模糊理论这一公理化体系,提出了当精确可能性分布无法获得时,如何从可变参数可能性分布这一新视角对实际决策问题进行建模,弥补了文献中基于名义可能性分布优化方法