本书主要讲述数学是中国古代科学中一门重要学科,其发展源远流长,并且成就辉煌。现在的我们不仅要了解先进的西方科学技术和科学理念,更要了解我们祖先在数学上的杰出成就以及对世界科学技术进步作出的贡献。我们不仅要学习历代古人孜孜不倦、用于克难的精神,也要学习他们在数学研究中展现出来的种种智慧和巧思。
《高等数学习题全解与学习指导》分上、下两册。下册内容为向量与空间解析几何,多元函数微分学,多元函数积分学,无穷级数配套习题讲解。书中各章节的主要内容都配有精心选取的例题和习题,着重训练读者对定义与概念的理解、对定理与方法的应变能力,培养读者解决问题的逻辑思维方法和创新能力。
《数学实验》主要讲述工程和科学计算中常用的数学实验以及基于MATLAB的实现.《数学实验》分为5章,共17个实验.主要内容包括微积分基础理论知识的数值验证,常见数的探索,矩阵运算、迭代法等代数运算的数值实现,常微分方程相关问题的数值验证,概率统计实验的数值验证等.附录部分介绍了MATLAB基础.《数学实验》突出数学类专
今天的生活以一种不可思议的方式飞速地改变着,越来越多的新方式中出现并影响着我们的生活,而这背后数学扮演者越来越重要的角色。本书从生活哲学中的数学、古代生活中的数学、日常生活中的数学以及现代生活中的数学四个部分,将生活正隐藏着的数学道理娓娓道来。在琐碎繁复的日常生活中,我们会遇到林林总总各种问题。本书引导读者学习数学思维
本书内容包括:行列式、矩阵、线性方程组与向量组的线性相关性、相似矩阵与二次型、线性空间与线性变换、数学软件Matlab简介与上机实验,书末附有常用“线性代数”英文专业词汇及部分习题参考答案与提示。
中国科学院数学研究所一批中青年学者发起组织了数学所讲座,介绍现代数学的重要内容及其思想、方法,旨在开阔视野,增进交流,提高数学修养.本书的文章系根据2019年数学所讲座的8个报告中的7个报告,按报告的时间顺序排序.具体内容包括:Hecke代数简史,Fourier与Fourier分析,高维黎曼问题,丢番图问题、算术几何与
本书分为四个部分:第一部分介绍了基本概念和ZU的公理;第二部分讨论了如何由此引出自然数、实数、线等概念;第三部分的主题是基数和序数;第四部分主要讨论了选择公理和连续统假设。本书不仅由浅入深地呈现了集合论领域的技术手段和证明结论,还论述了这些工作背后的哲学动机,可以让读者了解那些貌似繁杂冗长的技术细节背后的哲学思考。
本书总结了近年来作者在常微分方程边值问题和定性理论方面的部分研究成果,共九章。第1-6章利用Leray-Schauder度、迭合度理论、锥上不动点理论、上下解方法、**值原理和单调迭代技巧研究了非线性常微分方程、时标动力方程非局部边值问题的可解性、正解的存在性和多解性以及解的收敛性。第7-9章主要介绍种群动力系统中离散
《圆锥曲线论》将圆锥曲线的性质网罗殆尽,把综合几何发展到最高水平,使后人在将近两千年的时间里都没有插足的余地,直到笛卡儿等人创立坐标几何、帕斯卡等人创立射影几何,才使得圆锥曲线论有所突破。天文学家开普勒、数学家莱布尼兹等亦从中受益。《圆锥曲线论》集欧几里得、阿基米德等前人之大成,同时将该领域的研究向前推进了一大步,证明
本书系统阐述用于数学教育专业领域的教育统计、教育测量和教育评价的基础知识和基本技术.主要内容包括教育测评概述、统计基础、统计推断、教育测量质量分析、教育测量项目分析、数学测验试卷的设计、教育调查问卷的开发、教育评价量表的建构、教育评价的实用技术等.本书注重理论性和实用性的统一,内容丰富、阐释清晰、用例典型.