本教材选材较为系统,兼顾数学的总体概貌,数学发展的历史、现状和未来,数学的主要分支、常用的思想方法以及重要的数学问题。特别是,每章(或节)后设置了58个思考题,融入多年来高等数学的教学实践中学生所提出的有代表性的问题,紧密结合学生的实际,值得进一步思考与探索,从而提高课程教学的知识性与思想性。
本书作为《线性代数》(孟昭为等主编,科学出版社,2009年4月第二版)的辅助教材,对相应的章节给出基本要求、内容提要、典型例题分析,并对课后部分习题进行了解答,每章后附有自测题,对近年研究生试题(线性代数部分)做了详细解答。
本书分上下两篇。上篇通俗地阐述了作者所开创的几何解题的“消点法”。用这个方法可以机械地判定所谓“等式型可构造几何命题”的真假。命题成立时还能够产生人容易检验和理解的证明,即所谓可读证明。书中先引入作者所发展的系统面积方法的两个基本工具,即共边定理和共角定理。接着在共边定理的基础上把面积方法算法化,系统地建立了面积消点方
本书主要讲述解析几何的基本内容和基本方法,内容包括几何空间的线性结构和度量结构、空间直线和平面、常见曲面、坐标变换、二次曲线方程的化简及其类型和性质、正交变换、仿射变换、射影平面和射影交换等。书中有适量例题且每节都配有习题,书末附有习题答案与提示。
本教材主要介绍数学分析的基本概念、基本理论与基本方法,包括实数与数列的极限理论,一元函数微积分学,多元函数微积分学,无穷级数等内容。本教材注重工科院校数学学科类专业学生的可读性,针对性强。本教材很好地处理了实数与数列极限理论的关系,在概念的引入与叙述中强调自然性与联系性,较好地克服了这一数学分析教学难题,起到了利于教、
本书按教育部高等学校的复变函数与积分变换课程教学大纲要求编写,知识体系完整,逻辑性、系统性强,例题及习题丰富.内容包括复变函数与积分变换两部分,其中复变函数内容包括复数与复变函数、解析函数、复积分、复级数、留数定理、保形映射;积分变换内容包括傅里叶(Fourier)变换及性质、拉普拉斯(Laplace)变换及性质、积分
本书为数学与密码学交叉学科的特色教材,内容包括整除理论、同余、连分数、同余方程、原根。本书以数论知识为主线,有机地融入数论应用(主要是在密码学中的应用)的内容,理论与应用的知识的广度和深度都适度。
《复变函数与积分变换》是根据教育部工科数学课程教学指导委员会最新修订的“工科类本科数学基础课程教学基本要求(修订稿)”的精神和原则,结合多年的教学实践与研究而编写的.主要内容包括:复数与复变函数、解析函数、复变函数的积分、解析函数的级数表示、留数定理及其应用、共形映射、傅里叶变换、拉普拉斯变换等.每章后配有例题和习题,
《次调和分析》共分七章。第一章中介绍的知识在复分析中是最基本且十分重要的,它们的应用也始终贯穿于《次调和分析》之中.第二章主要介绍国内外位势理论的历史和现状.第三章介绍经典的复分析理论在半空间上的推广,如Carleman公式等。第四章介绍挖掉例外集的思想考虑半空间中调和函数、次调和函数等的增长性理论等内容。
《常微分方程定性与稳定性方法》是为理工类专业的硕士研究生和高年级本科生的需要所编写的一《常微分方程定性与稳定性方法》.《常微分方程定性与稳定性方法》为第二版.主要包括定性理论、稳定性理论和分支理论三个部分.内容着眼于应用的需要取材精练,注意概念实质的揭示、定理思路的阐述、应用方法的介绍和实际例子的分析,并配合内容引入计