几何图形往往能够带给人们简洁、优美的直观感受,这也是几何学的魅力之所在。本书将带领读者体验一场别开生面的几何之旅,领略各种美妙的几何奇观。首先展示共点、共线、共圆等神奇的几何现象,然后介绍圆形、黄金矩形等赏心悦目的几何图形,最后揭秘令人眼花缭乱的几何错觉。为了让读者充分领略这些几何奇观的美妙之处,享受优美的几何图形所带
本书第一版是普通高等教育“十一五”国家级规划教材“大学数学”系列教材之一,结合上海交通大学高等数学课程多年教学实践,对第二版教材在内容取舍、例习题配置上都做了改进,并对重难点概念配备了视频讲解。 本书注重微积分的思想和方法,重视概念和理论的阐述和分析。结合教材内容,适当介绍了一些历史知识,指出微积分发展的背景和线索,以
高等数学(上册)
魏晋刘徽是我国古代杰出的数学家,他的突出贡献是为《九章算术》作注,完善了中华数学的理论体系。在刘徽数学广阔的原野上,有几座神秘莫测的奇峰,虽历经千百年的风雨沧桑,至今仍散射出神秘的光彩。刘徽数学简洁明快、博大精深,它的前瞻性思维是人们所难以理解和想象的,一些成果直到今天还没有为世人所普遍理解和接纳。本书分三卷,旨在探究
本书分五章。第一章介绍了Schrdinger问题的背景。第二章讨论了具有临界增长的拟线性Schrdinger-Poisson系统,应用扰动方法、Moser迭代和近似技术得到了一个具有两个节点区域的最小能量符号变化解。第三章利用广义Nehari流形方法得到了Schrdinger-Poisson系统的基态解。第四章利用变形
本教程是由编者之一徐超江过去二十多年在法国鲁昂大学和南京航空航天大学为本科生讲授常微分方程课程的讲稿整理而成。教程的内容分为两大部分,第一部分是常微分方程课程的基本内容,包括常微分方程的基本概念;一阶常微分方程的初等解法;线性常微分方程和方程组的基础知识;常微分方程的基本定理、稳定性理论,以及运用常微分方程理论研究一阶
本书研究了不等式理论中约束优化的强大方法和推广,点介绍了-些经典的和新的不等式,包括证明不等式的简单技巧、AbeI不等式、数学归纳法、Newton不等式和Maclaurin不等式、Blundon不等式、混合变量法、强混合变量法、Lagrange乘数法等相关内容。本书还专门讨论了所提出的问题,问题分为初级问题和高级问题,
本书介绍了关于数学心理学的一般考察、关于无意识的讨论、无意识和发现的关系、准备阶段的逻辑和机遇、最后阶段的有意识工作、不同类型的数学心理、直觉中的不解之谜、对数学研究的一般性指导等。
本书介绍了有趣的四维几何,并从非欧几何学出发,逐渐涉及狭义相对论、哥德尔的时间旅行等物理学世界。几何体是不变的形式。本书的目的是将宇宙描绘成一个几何体,目标是呈现一个我们所处的弯曲空间的直观图景,以深入浅出的形式,展示了我们宇宙中时间的流逝和各种可见的变化是如何可能用四维时空的术语进行思考和描述的。本书充分展现了时空的
本书在理论方面以韦伊定理为目标,介绍有限域上平面代数曲线的几何、数论与代数性质和概念。韦伊定理是几何、数论和代数的结合,这种结合发展出纯粹数学的一个新的交叉分支:算术代数几何。本书意图帮助莘莘学子了解和掌握有限域上的代数曲线理论,使代数曲线理论成为研究通信中各种问题的有力的数学工具。本书分为预备知识、代数曲线的理论、代