"本书是结合东南大学多年来工科数学分析课程教学改革实践经验编写而成的,体系完整、内容严谨,融入新工科理念和数学实验内容,并补充了延伸阅读材料供读者自学。本书分上、下两册,上册内容为一元函数的极限与连续、一元函数微分学及其应用、一元函数积分学及其应用、常微分方程(组)及其应用,并在附录中介绍了集合、映射、一元实函数等预备
"本书与同济大学数学科学学院编写的《高等数学》(第八版)相配套,由同济大学数学科学学院的教师按照《高等数学》(第八版)的章节顺序编写而成。本书的编排与教学需求保持同步,每节(或相关的几节)包括内容要点、教学基本要求、释疑解难、例题增补、习题选解等栏目。习题选解对教材中较难并具有典型性的约三分之一总量的习题作出简要解答,
"本书是同济大学数学科学学院编的《高等数学》第八版,从整体上说与第七版没有大的改变,内容深广度符合2014年版“工科类本科数学基础课程教学基本要求”,适合高等院校工科类各专业学生使用。本次修订遵循“坚持改革,不断锤炼,努力打造培根铸魂、启智增慧的精品,为人才培养和立德树人作贡献”的要求,对第七版进行了一次细心的修订:少
????为什么学数学总是学不进去,或是总也学不好?其实是你一直还没踏入数学学习的门槛。数学不是一个单独的学科,众多学科都与其相关联。在生活中,数学也无处不在。当你真正了解了数学的本质,学会用数学思维去思考一切后,你就会发现,原来数学就这么简单,而且,学数学真的会上瘾。请跟随本书,开启一段从史前时期到人工智能时代的跨越千
本书收录了十位20世纪后半叶的数学家,他们每个人都在数学史上留下了自己的足迹。在美国成为数学研究中心的时代里,他们是更加多元化的国际数学大家庭的成员,构成了这个大家庭的横截面。在这个时期内,很多长期以来开放性的问题得到了解决,纯数学和应用数学得到了大发展,新数学思想的引入使得主要技术进步成为可能。
本书为理论物理学家大栗博司先生写给自己女儿的数学启蒙读物,全书以用“数学语言”解读自然为线索,用生动故事和比喻重新讲解了数学的核心原理与体系,并且讲解了把数学作为一门“语言”的思维方式,是数学入门,重新理解数学的科普佳作。书中以日常生活的真实事件为话题,按从形象、具象到抽象的顺序讲述了生活话题背后的数学原理,为读者提供
本书解释了数学如何以及为什么改变了世界并且我们如何利用数学武装自己,从而使自己能够在生活中的各个领域做出明智选择。本书带领读者了解健康统计数据,了解投票系统背后的数字,掌握在线搜索工具的工作原理,探索数学如何创建理想的城市。
本书主要讨论无穷维Hamilton系统,旨在用现代非线性分析的框架研究无穷维Hamilton系统。本书先介绍无穷维Hamilton系统的定义和性质,同时选取现代非线性分析中的常见问题为例解释其应用。我们采用变分的方法,建立统一的变分框架并且发展一些抽象的临界点理论来处理无穷维Hamilton系统。特别地,对于量子理论中
本书介绍组合计数最基本的理论和方法,内容包括:排列与组合、母函数、容斥原理、递推关系和波利亚计数理论及应用。内容编排采用相对传统的方式,同时注重各章节之间的关联、近年来新问题新方法的融入及其在图论中的应用。绪论部分介绍了组合数学发展历程中四个经典的问题,附录部分列出了一些经典的组合数和恒等式,供读者进一步了解。