"本书依据教育部高等学校大学数学课程教学指导委员会制定的大学数学课程教学基本要求编写而成,全书分上、下两册出版。下册包括向量代数与空间解析几何、多元函数微分法及其应用、重积分及其应用、曲线积分与曲面积分、微分方程等内容,书末还附有部分习题参考答案。本书配有适当习题,每章总习题分为A,B两组,B组题有一定难度,具有综合性
《数学符号理解手册》生动地描述了符号们的成长历程,由浅入深地概括了数学公式,呈现了数学结构。不知不觉中,枯燥的数学公式深深地印入你的脑海之中。这一篇篇的小故事幽默地+、-、×是什么时候、在哪儿诞生的?f为什么长成钩子的模样?10g的词源是什么?诞生虚数i的真实理由是什么?大数学家莱布尼兹在哪儿出错了?什么情况下,三角形
《数学圈丛书》共计7册,用普及而通俗的方式与读者进行交流,使数学不再枯燥难懂。它们以另一种方式诠释了学习数学的新方法,包括有:使用与我们生活息息相关的小故事来领略数字1到9的特性、结合大千世界中离奇而真实的巧合故事来分析偶然事件是怎么发生的等等。“用非数学的形式来普及数学”,用幽默生动的语言和通俗易懂的文字使丛书具有很
本书的主要内容包括函数的极限与连续、导数与微分、不定积分与定积分、多元函数微分学与积分学、常微分方程及级数等。本书突出“数学为根本,应用为导向”的特点,内容难易适中,语言通俗易懂,逻辑清晰。本书每节重点内容均配套微课讲解视频,每章附有详细的思维导图以梳理脉络,易教利学。每节后附有“基础训练”与“提升训练”分层练习,每章
本书主要介绍利用三个函数(完整二次函数、负高次幂函数、时间累计函数)求解现实曲线(数据)相应函数的方法,即解决现实函数的建立问题。前三章分别讨论三个函数的基本性质,为函数求解及函数使用提供基础性依据。后三章分别介绍现实中可能的三类函数,即理论函数、近似函数、经验函数的求解方法。每章均分别以充实的例子演示各类函数的具体求
本书介绍了验证、确认和不确定度量化的定义、研究范畴和主要方法途径。并对不确定度和误差中的重要内容进行了具体讨论,归纳了误差和不确定度的来源。从代码验证和解验证以及近似计算模型的代理模型方法,讨论了输入不确定性通过计算模型的传播问题,以及相应敏感性分析内容。从而进一步对模型确认和预测相关的一系列问题展开介绍。
本书涵盖了命题逻辑、一阶逻辑、不可判定性以及二阶逻辑等方面的内容,并且包含了与计算机科学有关的主题,如有限模型。本书特点是:内容可读性强;组织结构更灵活,授课教师可根据教学需要节选本书的内容;反映了近几年来理论计算机科学对逻辑学产生的影响;包含较多的示例和说明。本书既能适用于计算机专业又能满足数学系基础数学专业,为了适
本书主要前三章主要介绍引进集合论的基本公理、基本概念、基本方法以及建立起典型的可数集合的例子,包括自然数集合、整数集合、有理数集合以及彻底有限集合的集合。第四章主要是引进选择公理以及由此建立起来的基数运算律和一些典型组合实例。第五章专门引进实数集合并展开对它的系统分析。本书既能适用于计算机专业又能满足数学系基础数学专业
本书内容包括复数与复变函数,解析函数,复变函数的积分,级数,留数,保形映射等,共分六章。 本书在编写过程中力求做到条理清晰,层次分明,通俗易懂,注重解题方法的训练和能力的培养。为巩固正文内容,在每一章的末尾都配有小结和测验作业,以使读者易于抓住每一章的重点并测试自己对本章基本内容的掌握情况。 本书可供高等工科院校各
本书根据课程教学目标和知识点,以“知识主导、能力驱动”为中心编写。书中以数学建模实际案例为切入点,通过对一个个生动案例进行分析、讨论、建模、求解的一整套过程,帮助学生掌握一大类问题的求解方法,达到“以点扩面”的效果。每个案例后均配备有思考题,让学生能够做到学有所思、学有所获。书中还注重挖掘课程知识点与社会主义核心价值观