《Hilbert型不等式的理论与应用.下册》利用权系数方法、实分析技巧以及特殊函数的理论,系统地讨论了Hilbert型不等式,不仅讨论了若干具体核的情形,更从一般理论上讨论了各类抽象核的Hilbert型不等式最佳常数因子的参数搭配问题,进而讨论了构建Hilbert型不等式的充分必要条件,陈述了Hilbert型不等式的最
本书秉承以理解为首要的理念,对难以理解的一些概念,以不同的角度做了分析阐述,并尽量配以图像和实例,以直观、具体的方式让学生通俗易懂。主要内容包含多元函数基础知识、二元函数、重积分、重积分的运用等知识。
数论是研究整数性质的一个重要数学分支。本书向读者介绍了整数的整除理论、同余理论、不定方程和原根、指标与数论函数等的基础知识和常用方法。本书主要分为5章,为方便中学生学习数论,每章均配备了初等而有趣的应用问题,即中学数学竞赛中的数论题目。本书既可作为高等院校数学专业的教学用书,也可作为对初等数论感兴趣人员的参考用书。
本书从算法框架入手,建立系列非负矩阵分解模型的抽象数学模型,即非负块配准模型,从统一的角度分析现有的非负矩阵分解模型,并用以开发新的非负矩阵分解模型。根据非负块配准模型的分析,本书提出非负判别局部块配准模型,克服了经典非负矩阵分解模型的缺点,提高了非负矩阵分解模型的分类性能。为了克服经典非负矩阵分解的优化算法收敛速度慢
本书共5章,内容包括空间解析几何与向量代数、多元函数微分法及其应用、重积分、曲线积分与曲面积分、无穷级数等与教学内容配套的习题及其详细的解答,每章分为小节习题和总习题两部分.随后安排三套难度适中的模拟题,并配有详细的答案及参考解答,可以作为同学们复习、模拟测验的一手资料.在最后,为学有余力的同学设计了一套能力提升题,并
本书是根据清华大学出版社与中国计算机学会共同规划的“21世纪大学本科计算机专业系列教材”《离散数学(第4版)》(主教材)以及电子教案编写的配套教学指导用书.全书分为14章,每章包含内容提要、习题、习题解答与分析三部分.内容提要总结了本章的主要定义、定理、公式、重要的结果等;习题部分包含了与上述内容配套的数十道题;习题解
《MATLAB数学建模方法与应用》主要介绍常用数学建模方法及其MATLAB实现与应用,内容包括MATLAB数组运算、程序设计、绘图、数据管理、符号计算、数值计算、多项式与插值拟合、常用统计及优化建模方法与MATLAB求解、人工神经网络方法、排队论方法、以层次分析法和模糊评价法为代表的多指标综合评价方法、MATLAB图像
本书依据教育部高等学校“复变函数与积分变换”课程教学大纲要求编写,知识体系完整,逻辑性、系统性强.全书共8章,分两个部分:第一部分为复变函数,包括第1章至第6章;第二部分为积分变换,包括第7章和第8章.第1章介绍复数与复变函数,第2章介绍复变函数解析性,第3章介绍复变函数积分,第4章介绍级数,第5章介绍留数,第6章介绍
本书结合线性代数、微积分、概率论与数理统计、常微分方程、*优化方法、插值与拟合等知识,利用MATLAB软件做数学实验,从而帮助学生掌握MATLAB软件操作方法,深入了解数学理论和方法,激发学生学习数学的兴趣,培养学生应用数学知识和MATLAB软件解决实际问题的意识和能力.全书共分14章:第1章~第5章是软件篇,介绍MA
通常人们总把数字想象得抽象、确定、永恒、枯燥无味,而好的故事则充满生气、精细微妙、回味无穷,但不太严格。而本书指出,故事与数字之间并非如你想象的那么不同,它们之间有令人惊奇、引人入胜的联系。事实上,数学史上逻辑和概率等重要概念,都是从故事演变的直观想法中发展起来的,新近的突变理论和复杂性理论亦是如此。为此,作者在全书中