本书是根据高等院校理工科专业与经济专业线性代数课程教学大纲要求及专业教师多年的教学实践经验总结编写而成的.全书共7章,内容包括行列式、矩阵、线性方程组、特征值与特征向量、二次型、向量空间与线性变换、用Mathematica解线性代数问题等.其中二次型、向量空间与线性变换、用Mathematica解线性代数问题等3章可作
本书分为上下两册共10章。上册共6章,内容包括函数、极限与连续,导数与微分,中值定理与导数的应用,不定积分,定积分,微分方程等。本书注重基础性、科学性、应用性,在讲解方法上淡化了一些公式的推导和一些定理的证明,在例题和习题的选配上降低了难度,每节后的习题和每章后的测试题,便于学生及时巩固所学知识。本书内容编排合理,文字
本书分为上下两册共10章。下册共4章,内容包括向量与解析几何、多元函数微分及其应用、多元函数积分及其应用、无穷级数等。本书注重基础性、科学性、应用性,在讲解方法上淡化了一些公式的推导和一些定理的证明,在例题和习题的选配上降低了难度,每节后的习题和每章后的测试题,便于学生及时巩固所学知识。本书内容编排合理,文字表述简洁、
本书是与同济大学数学系编写的《高等数学(第七版)》(高等教育出版社出版)相配套的同步辅导教材,分上、下两册出版.书中各章均包括本章内容和学习要求、基础巩固、应用提升、综合拓展及本章自测题五个部分.本书为上册,内容包括函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分、定积分的应用和微分方程.本书精选了多
《对数线性模型》是好的对数线性模型教学材料之一,不仅讨论了一般对数线性模型,还讨论了logit模型,这一模型通过分析作为自变量函数的因变量的期望发生比来检验自变量与因变量之间的关系。作者从处理二分变量的方法开始,逐步形成一个处理多类别变量的方法。在理论阐述的过程中,作者还使用了大量的来源于政治社会学的例子,每个例子都阐
这本妙趣横生的科普读物,让我们徜徉于一个由日常生活中的数学公式所构成的世界。你会发现,浏览这52个数学公式的故事时,时间过得比翻一副扑克牌还要快。这些引人入胜的真实故事,简洁明了,通俗易懂。每一个故事都以一个数学公式作为引子,涵盖体育、商业、历史、艺术、科学和技术等不同领域,有关于E=mc2这样著名公式的逸闻,也有描述
  《高等代数习题解析》作者是教育部届高等学校国家级教学名师,具有丰富的教学、科研经验及积累,出版了著作48部,取得了丰硕的教学和科研成果。《高等代数习题解析》是作者专门为其所编写的教材《高等代数(上、下册)》(北京大学出版社,2019年)配备的学习辅导书.全书分九章,并且按照教材的讲授体系进行展开,各
《常微分方程》是北京大学数学教学系列丛书之一,是数学各专业本科生常微分方程课程的教材,它系统介绍了常微分方程的基本理论和基本方法,内容包括:微分方程的基本概念、初等积分法、微分方程解的存在和唯一性、解对初值和参数的依赖性、线性微分方程组、幂级数解法、边值问题、一阶偏微分方程、微分方程定性理论简介。《常微分方程》作者在北
本书共有13章,收集了作者提出的数论与组合方面的820个富有挑战性的猜想,内容涉及整数与有理数的表示、素数与可行数、数论函数、丢番图方程、组合同余式与级数等式、置换、行列式与积和式、加法组合、剩余类系与群的陪集覆盖、组合序列与多项式.这些猜想中的绝大多数通俗易懂,具有数论、组合与群论基础知识的读者可看懂全书.为方便读者
本书详细阐述了非线性连续和离散动力系统中的分支理论,以及它们在生物数学、化学反应、神经动力学等领域中的应用.全书共分为10章,主要内容有动力系统介绍、拓扑等价、分支与动力系统的结构稳定性、连续-时间和离散-时间动力系统平衡点和不动点的单参数.以及双参数分支、n维动力系统中平衡点和周期轨道分支、双曲平衡点的同宿和异宿轨道