《线性算子的分解和Banach空间的几何(影印版)》综述了Banach空间理论取得的相当大的进展,这是Grothendieck的奠基性论文《拓扑张量积的度量理论概述》的结果。《线性算子的分解和Banach空间的几何(影印版)》作者考虑的中心问题是Banach空间X和y具有性质:每个从X到y的有界算子都具有Hilbert
《生成函数讲义(影印版)》向读者介绍了生成函数的语言,它是当今计数组合学的主要语言。该书从定义、简单的属性和许多生成函数的例子开始。然后讨论了形式语法、多变量生成函数、分拆和分解以及容斥原理等主题。在最后一章中,作者描述了树、平面图和嵌入在二维曲面中的图的计数应用。在全书中,作者通过提供有趣的例子而不是一般理论来激发读
《Lyapunov指数和光滑遍历理论(影印版)》是对光滑遍历理论的系统介绍。讨论的主题包括Lyapunov指数的一般(抽象)理论及其在微分方程稳定性理论、稳定流形理论、绝对连续性和具有非零Lyapunov指数(包括测地流)的动力系统遍历理论中的应用。作者通过几个非零Lyapunov指数动力系统的典型实例,说明了该理论的
《二次型的代数和几何理论(影印版)》是对二次型代数理论的全面研究,从古典理论到最近的发展,包括从未出版过的结果和证明。该书是从代数几何学的角度写的,包括特征2的域上的二次型理论,证明尽可能是特征独立的。对于一些结果,既给出了经典证明,又给出了几何证明。该书第一部分包括经典的二次型和双线性型代数理论,回答了该理论发展初期
本书主要论述了zeta和L函数之零点间距与大型紧典型群之随机元特征值间距之间的深层关系。这种称为Montgomery-Odlyzko定律的关系,对有限域上的zeta和L函数之宽类都成立。本书借鉴并描述了诸多不同的数学领域,从代数几何、模空间、单值性、等分布和Weil猜想,到关于紧典型群在维数趋于无穷的极限情况下的概率论
《对合之书(影印版)》介绍了带对合的中心单代数理论,与线性代数群相关。它为任意域上线性代数群的**研究提供了代数理论基础。对合被视为(埃尔米特)二次曲面的扭曲形式,导致了二次型的代数理论模型的新发展。除典型群外,书中还讨论了与三重对称性(triality)有关的现象,以及源自例外若尔当代数或复合代数的F4或G2型群。一
C*-代数在20世纪70年代得到了极大复兴,这缘于Brown、Douglas和Fillmore在C*-代数扩张中引入了拓扑方法,以及Elliott使用K-理论为AF代数提供了一个有用分类。这些结果成为一系列用于分析具体C*-代数出色的新工具之开端。本书通过详细分析几种重要的C*-代数类,介绍了该主题的基础知识,可作为研
心算,看似神奇,实则有规律可循。中国人的数学能力,在世界上首屈一指,绝非偶然。有很多充分掌握心算奥秘的密码。指算六十甲子是心算万年历的一种方法,更是一个密码;多位数多样式乘法,也有快速完成的窍门。阅读此书,加以练习,你也能成为“心算达人”!
本书希望为解答数学问题和参加数学竞赛感兴趣的学生们以及他们的父母、老师和辅导员,建立一整套解题的入门策略小节。本书中所包含的主题*适合四年级和五年级这样的高年级学生,以及极具天赋的三年级学生。同样,我们知道许多学生后来才显示出数学竞赛才能(在六年级以后),也可从本书各节中受益。
《数学2》为几何类内容,包括立体几何及解析几何两个模块。两册书从不同的方向和角度全方位阐释了基础的数学知识。并针对贯通培养项目的特点,注重知识的趣味性以及与后续数学课程和专业课程的衔接性,为学生进一步学习、获得较高数学素养奠定基础。