本书是重庆大学“高等数学”课程教材体系改革试点工作的配套讲义。在学校领导、教务处及院系领导的长期大力支持下,试点工作进行了二十多年。参加试点教学的学生主要来自物理、力学及计算机专业。参加试点教学的教师同时也进行传统“高等数学”的教学工作。两种教材的教学中使用本讲义的学生对教学的评价一般都要高于使用传统“高等数学”教材的
本书系统地介绍流体力学中的基本方程,即:不可压缩Navier-Stokes方程的最新理论和方法,着重介绍Fourier分离方法及其在Navier-Stokes方程中的应用。具体讲,就是用此方法建立大初值整体弱解在范数意义下的最优大时间行为,以及整体小初值强解在范数意义下的长时间渐近行为。本书循序渐进地阐述Navier-
本书主要讲解张量基本概念,它们的代数运算和微分学,以及Riemann流形上的张量及其微积分学,Riemann流形上的微分算子。本书还用大量篇幅讲授张量在连续介质力学和物理中的应用。其中有许多内容是作者30多年的研究生涯中应用张量分析工具,建立相关力学数学模型,发展新的数学方法和数值计算方法的研究成果。
本书充分考虑到初学者的需要,内容、例题、习题都经过精心的挑选和组织,讲解细致,循序渐进,实例贴近日常生活或计算机应用。本书注重算法,且算法描述独立于某种具体的编程语言。教师可根据学生的层次和兴趣来灵活拓展和组织讲解内容。
本书涵盖了线性代数尤其是矩阵理论中所有基本且重要的内容,包括:向量空间,内积空间与赋范向量空间,分块矩阵,矩阵的特征值与特征向量、特征多项式与极小多项式,酉三角化与分块对角化,矩阵的相似与标准型,矩阵的三角化、对角化以及多个矩阵的同时对角化,交换的矩阵族,矩阵的各种分解,特征值交错现象与惯性定理,各种特殊而重要的矩阵(
<<不用怕--大老李带你玩数学>>是一本面向各年龄层次数学爱好者、以及自认为"数学不好的人”的一本科普书。本书的创作宗旨在于选择有趣且不太为人熟知的数学问题,从有意思的角度切入讲解问题,力求以最浅显和生动的语言,将较为高深的数学知识介绍给读者,使读者不但能理解这些问题,更能获得思路继续研究和赏玩,从而获得更多乐趣。让读
本书共分10章:第1章函数,第2章极限与连续,第3章导数与微分,第4章微分中值定理及导数的应用,第5章不定积分,第6章定积分,第7章多元函数积分,第8章级数,第9章微分方程,第10章差分方程。本书主要介绍一元、二元微积分等基本理论知识与技巧,弱化数学理论的难度与深度,重在培养学生用微积分理论方法解决实际问题的能力与技巧
本书二十章,内容涉及:代数、数论、逻辑、概率、无限集合与数学的基础、环、矩阵、转化、群、环以及拓扑学。讨论了毕达哥拉斯、阿基米德、牛顿、莱布尼茨、高斯、罗巴切夫斯基、伽罗瓦、黎曼、麦克斯韦、爱因斯坦等众多人物的贡献。书中的内容纯数学和应用数学各占一半,二者紧密结合。
本书分为四个部分:第一部分,写现代时期的数学;第二部分,回溯过去,讨论微积分的起源,以及伴随着非欧几里德几何的诞生而出现的概念性转变;第三部分,讨论数学中最富哲学性的术语:无限的概念和形式逻辑的基础,也讨论了艾伦·图灵的天才想法,并试图阐明真理、证明与可计算性之间的关系;第四部分,考虑数学在我们试图理解我们周围的世界的
本书谈初等数学又不局限于初等数学,着重讲了两个问题:一个是变换的迭代,一个是变换的磨光性质。内容包括:变换的概念、平均值不等式、三角形的等周不等式、小孩分糖块、圆周上的围棋子、杜赛问题、调整整数矩阵等。