《工科数学分析(第2版)》是以教育部工科数学课程指导委员会颁布的高等工科院校本科《高等数学课程教学基本要求》为纲,在多年开设工科数学分析课程的基础上,广泛吸取国内外知名大学的教学经验而编写的《工科数学分析》课程教材。它是一门重要的基础理论必修课,不仅包含了一般理工科“高等数学”的全部内容,而且加强和拓宽了微积分的理论基
《高等数学(上)》为全英文教材,主要内容形成以函数、极限、连续、导数、积分、级数、微分方程等为明线,以简单经济函数模型、复利和连续复利、边际、弹性、经济优化模型等为暗线的课程体系,突出微积分的基本方法的理论学习及经济应用。
问题情境设计式赏识教学法与案例选(高等数学)
本书是作者根据多年教学经验,结合*版教学应用中出现的情况,以及这些年与课程内容有关的应用理论方面的发展情况,总结修改而成的作者在介绍近世代数课程的传统内容时,从以下几个方面进行了深入浅出的讲解,引人了泛代数研究的基本思想内容;较深入地介绍群、环的思想和内容,简单介绍了格论的思想内容;同时还指出了所介绍的几种代数结构的一
面向后件集的模糊推理机制是在模糊集合相互关联的环境下进行的,可以捕获到规则中更多的模糊信息,克服了传统模糊推理会丢失前件集与后件集相关性信息的缺陷,推理结果更加合理。本书详细介绍了面向后件集的模糊推理机制及其应用,包括在Type-1模糊逻辑系统、区间型Type-2模糊逻辑系统和一般型Type-2模糊逻辑系统中的应用,以
本书针对应用科学中的11个重要的非线性发展方程,介绍差分求解方法的**研究成果,包括微分方程问题解的守恒性和有界性分析、差分方法的建立、差分解的守恒性和有界性分析、差分解的存在性分析、差分解收敛性的证明、差分格式的求解等内容。建立的差分求解格式包括非线性差分格式和线性化差分格式。这11个非线性发展方程如下:Burger
本书依据“工科类本科数学基础课程教学基本要求”,为高等院校工科类各专业学生编写,是高等数学的后继课全书内容丰富、思路清晰、结构严谨、体系完整,具有推理严密、概念准确、叙述详略得当的特点书中在应用高等数学知识进行推理论证时,对涉及的高等数学知识都给予了详细的注解,更有利于学生的学习和掌握书中的例题经过精心编选,每节
本书简要介绍了变分法所需的基本知识,包括索伯列夫空间、集中紧性原理、临界点理论等。为克服变分法应用过程中的一些紧性困难,本书也介绍了椭圆型方程解的无穷范数估计和正则化理论等经典结论。本书涉及的问题来源于薛定谔-泊松系统孤立波解的研究,主要内容包括作者近年来在含非局部项的半线性椭圆型偏微分方程领域一系列研究成果。本书可以
本书主要介绍不确定决策系统中的平衡度量理论、静态与两阶段动态平衡优化方法及其应用。在平衡度量理论中,介绍平衡度量的构造方法,引入平衡均值和风险值等优化指标,讨论基于平衡度量的收敛模式等。在静态平衡优化方法方面,引入评价函数来评估决策向量的优劣;依据所选择的评价函数,建立各种不同的静态优化模型。在动态平衡优化方法方面,介
本书以数学方法论为基础,注重数学方法对解题的理论指导;以具体问题的解决为抓手,突出数学方法的引领作用;以解决问题的策略取向为线索,层层深入,旨在打开一扇通往成功解题的大门.全书共九章,第一、二章提出数学解题首先要多途径观察,然后考虑化归;第三章介绍类比法,以探寻熟悉的解题模式或方法;第四章基于解题直觉探索解题思路的获取