本书是理工科、技术学科、经济与管理、医学、农林等类学生学习高等数学课程的学习辅导书。全书共八章:极限与连续,一元函数微分学,一元函数积分学、空间解析几何、多元函数微分学,多元函数积分学、级数和常微分方程。本书重视教学内容与习题解析的同步衔接,由浅入深地讲解了大量例题,同时注重整合知识,科学地指导学生进行解题的训练与复习
本书介绍代数K群的结构和性质。我们从一个环R的K群K0(R),K1(R),K2(R)开始,接着构造Quillen的高次K群,介绍Waldhausen范畴的K理论和概形的K群。为了方便学习,我们补充了所需的代数和同伦代数的基本知识,并介绍了模型范畴理论。*后介绍了Grothendieck的原相理论,并叙述了利用K理论来表
鉴于数学建模理论与方法的推广化应用及促进成果的共享与校企的快速合作,作者通过归纳总结过去十几年教学、科研、竞赛及与企业合作经验写成此书。内容安排如下:数学建模与MATLAB基础知识;递归与迭代方法;线性规划问题;整数规划及其MATLAB求解源代码;图与网络优化;统计学中的参数估计、假设检验、方差分析和相关度分析;数据的
本书依据《理工类本科高等数学课程教学基本要求》写作而成,适用于高等院校理工类非数学专业高等数学课程教学。《BR》与传统“高等数学”教材编写不同,本书重构了高等数学课程知识体系,对极限部分,从多元函数开始讲述,极限的定义采用集合的观点,增加定义的直观性;在微分学部分,从多元函数开始讲述,使微分学的概念更易于理解;在积分学
泛函分析是现代数学的一个重要分支,它不但具有高度的抽象性,而且具有高度的统一性和广泛的应用性。本书试图将抽象的泛函分析与一些具体的物理问题联系起来,内容涉及经典变分中的几个著名例子,线性泛函分析中一些基本定理,广义函数和Sobolev空间,泛函极值的一阶和二阶必要条件及充分条件,Ekeland变分原理及其推广和应用,P
本书以统一与基本的观点,概述应用上*重要的抽象空间,阐明其结构、内在联系及主要实例.内容涵盖一般数学结构、拓扑空间、一致空间、度量空间、拓扑向量空间、Banach空间,以及与空间结构相适应的一系列方法.
本书系统地介绍了抽象代数的基本概念、基本方法和基本理论。全书分为5章,前两章介绍具有一定深度和广度的群、环、域的一般知识;第3章介绍Galois理论,它是群论与域论结合所得到的深刻数学结果的具体体现;第4章介绍模与代数的有关知识;第5章介绍有限群的特征标理论及其初步应用。本书内容丰富、举例众多,特别注意通过分析例子概括
本书从算法分析和问题求解的角度,全面系统地介绍了离散数学的基础概念及相关知识,并在其前一版的基础上进行了修改与扩展。书中通过大量实例,深入浅出地讲解了集合与逻辑,证明,函数、序列与关系,算法,数论,计数方法与鸽巢原理,递推关系,图论,树,网络模型,Boole代数与组合电路,自动机、文法和语言等与计算机科学密切相关的前沿
数学不只是教给你孩子解题的套路,更不是让孩子死套公式。数学教孩子聪明、理智,教他学会思维,学会冷静推理。问题是要让孩子开阔眼界,了解世界,不仅仅是念好课堂上的知识。世界上的万物都有联系,都有规律,学会思维,就能破开外表,看穿本质。书是人类的朋友,是进步的阶梯,有时读上一套好书,会给人带来终身的好处。我给大家推荐这套《数
《天气播报员》本书讲述了一个高山顶上的村落只有夏季和冬季,在天气播报员、女市长和牧羊人先生三人的互相协作下,这个村落恢复了正常,出现了春、夏、秋、冬四季。这个美丽的故事旨在使孩子们在阅读故事的过程中学会加法和减法。