作为作者获奖书AlgebraicTheoryofQuadraticForms(Benjamin,1973)的新版,本书给出了在特征非2的任意域上的二次型理论的一个现代、自足的导引。从除了线性代数外的少量预备知识出发,作者讲述了一个专家级的课程,内容从二次型的Witt经典理论、四元数与Clifford代数、形式实域的Ar
从建立之初,量子群论已成为现代数学中最吸引人的论题之一,而它的大量应用有时竟包括了像低维拓扑和数学物理这些完全不同的领域。本书是直接面向没有此学科基本知识的学生最早的著作之一。除了线性代数外,预备知识仅仅要求熟悉一点经典的复半单李代数理论。从sl_2的量子类比着手,作者通过所有必要的细节细心引导读者去充分了解这个学科,
本书的主要目的是向读者提供多种视角来了解自守形式理论,除了对理论中熟知专题做详细且常常是非标准的阐述外(重点放在分析方面),还特别关注诸如theta函数以及以二次型的整数表示这些课题。作者讨论了自守形式理论中的许多重要专题,而这些专题很少出现在其他数学书中。证明的陈述也不是通常所见的,这或许能给读者对此主题的一种不一样
《数学与人文》丛书第二十四辑将继续着力贯彻“让数学成为国人文化的一部分”的宗旨,展示数学丰富多彩的方面。本辑的主题是“改革开放前后的中外数学交流”,我们特别邀请到了老一辈著名数学家杨乐院士、王元院士、陆启铿院士、万哲先院士和数学史专家李文林研究员,他们以不同的方式回顾了这段难忘的历史,为丛书的这一专辑提供了宝贵的文献;
现代调和分析,特别是Fourier限制性估计、微局部分析、拟微分算子与Fourier积分算子等融入几何的观念,在许多数学物理领域起着越来越重要的作用。本讲义用现代观点介绍调和分析的基本内容,特别是与偏微分方程研究密切相关的内容。主要涉及极大函数、频率空间分析(频率空间的调和分析)、多线性乘子理论、Calderón-Zy
这本书源自巴黎综合理工大学的一年级课程,全书主要内容包括:——“数学小词典”以更紧凑的形式给出了如下数学基本概念的要点:群、环、域、矩阵、拓扑、紧性、连通性、完备性、数值级数、函数序列的收敛性、埃尔米特空间等,同时包含一百多个习题及解答。——讲述数学根基中的3个理论:有限群表示论、经典泛函分析和全纯函数理论。——13个
本书首先介绍偏微分方程的古典理论和一些必要的论证,在内容、概念与方法等方面注重与现代偏微分方程知识之间的内在联系;随后对现代偏微分方程的基本知识做了介绍和论证。在介绍和论证过程中,注意各有关数学分支知识在偏微分方程中的应用。全书内容丰富,方法多样,技巧性强,并配有大量的例题与习题。这些习题难易兼顾,层次分明,其中有些习
黎曼曲面单值化定理是数学中最美丽且最重要的定理之一。它不仅给出了黎曼曲面的一个清晰的分类,而且也激发了许多新的方法。例如,它的证明激发了黎曼-希尔伯特对应和皮卡-富克斯方程,并且单值化的高维推广包含了卡拉比-丘流形。本书包括来自世界各地的专家就书名中的四个主题精心撰写的综述性文章,全面讨论了这四个主题以及它们之间的关系
本书话题取材几乎涵盖古典欧式几何的方方面面,其内容的深度和广度并不因其形式而受到局限。相反,对于读者,这样仅以作图展示的方式,省去了将文字翻译为图像的过程,几何事实跃然眼前。其内容涵盖欧式几何学的各个方面:三角形的心、三角形的线、三角形的元素、四边形、圆、射影几何定理、正多边形、向外作多边形、链状定理、圆锥曲线的美妙性
本书从应用角度论述CAGD中的形状可调参数曲线曲面造型方法.内容包括经典的参数曲线曲面造型方法、基于区间扩展法的形状可调多项式曲线、基于升次法的形状可调多项式曲线曲面、基于重新参数化的形状可调有理曲线曲面、形状可调的三角与双曲曲线曲面等几何造型方法。本书较为全面地反映了作者近10年来在曲线曲面造型领域从事研究的成果。全