本书介绍了环与模的基本知识和一般环的经典结构理论,介绍了模范畴之间的函子变换、模范畴的对偶与等价,以及投射模、内射模和它们的分解理论等现代环论基础知识与研究方法。本书内容丰富,知识自包含,并附有大量习题。 本书可供大学数学系高年级学生、研究生、教师以及从事数学、信息科学等研究工作的人员阅读参考。
本书是北京大学为硕士研究生开设"抽象代数"课程的教材,是数学专业研究生的必修课,书中包含了作者的研究成果。
本教材主要介绍数学分析的基本概念、基本理论与基本方法,包括实数与数列的极限理论,一元函数微积分学,多元函数微积分学,无穷级数等内容。本教材注重工科院校数学学科类专业学生的可读性,针对性强。本教材很好地处理了实数与数列极限理论的关系,在概念的引入与叙述中强调自然性与联系性,较好地克服了这一数学分析教学难题,起到了利于教、
全书共8章,包括复数与复变函数、解析函数、复变函数的积分、级数、留数、保形映射、傅里叶变换、拉普拉斯变换等内容。为方便学生深入掌握《复变函数与积分变换》课程的基本知识,作者精心设计了各章内容的相应梯度,每章配有适量的习题,书后附有参考答案。书末附有傅氏变换和拉氏变换简表,便于读者查阅使用。本书可供高等工科院校的师生作为
目前针对大学文科专业,经济学专业的学生,学习文科数学,经济数学,需要一本既通俗易懂,又知识全面的书籍,这种书籍不易过厚、过深过难,但要保证知识的完整性。正是在这样的背景下我们有了此书出版的想法。本书主要分为极限,一元微分学,一元积分学,以及多元微积分学的内容。涵盖了一元微积分的几乎全部内容,力求在概念处理上尽量通俗易懂
命题人与阅卷人联袂打造:2017考研数学辅导全书
《高等数学学习指导(下)》是应用型本科院校规划教材的学习指导丛书。《高等数学学习指导(下)》与《高等数学(下)》教材相配套。内容包括:向量代数与空间解析几何、多元函数微分学、多元函数积分学、无穷级数等。每章都包含以下五方面的内容:内容提要、典型题精解、同步题解析、验收测试题、验收测试题答案。在最后附有总复习题及六
本书首先介绍交换代数产生的背景与书中要用到的一些基本术语和事实,这算是本书的引论.引论之后包括七章.第一章交换环的根和根式理想.第二章模.第三章分式环与分式模.第四章诺特环.第五章整相关性与戴德金整环.第六章完备化与维数理论.第七章赋值域.每章后面有一些习题供初学者练习.
本书主要介绍了微分几何方面的基础知识、基本理论和基本方法。主要内容有:Euclid空间的刚性运动,曲线论,曲面的局部性质,曲面论基本定理,曲面上的曲线,高维Euclid空间的曲面等。除第一章外其余各章均配有习题,以巩固知识并训练解题技巧与钻研数学的能力。
本书讲述数学分析的基本概念、原理与方法,分为上、下两册。上册内容包括:函数、数列极限、函数极限、连续性、导数与微分、微分中值定理及应用、不定积分、定积分、定积分的应用、广义积分等。下册内容包括:数项级数、函数项级数、幂级数与Fourier级数、多元函数连续性、多元函数微分学、隐函数定理及应用、含参量积分、重积分、曲线积