闵嗣鹤教授是我国已故著名数学家,他的研究工作涉及许多数学分支,特别是对指数和估计、RiemannZeta函数论、数论在近似计算中的应用以及数字石油勘探中的数学方法等方面作出了的贡献。《闽嗣鹤文集》精选了闵嗣鹤教授在这几方面的具有代表性的重要论文二十篇,这些论文至今仍有基本的理论价值和重大的实用价值。本文集还收录了北京大
L·尼伦伯格所著的《线性偏微分方程讲义》共分两章:第Ⅰ章论述一个颇为古典的问题,即通过适当的自变量变换,把(一阶)算子组化为像Cauchy-Riemann方程组这样简单的典则形式;第Ⅱ章致力于一些现在已被证明是如此有用的工具,即拟微分算子,以及广义函数波前集(或奇谱)的概念,并介绍了它们的几个应用。《线性偏微分方程讲
单壿所著的《初等数论的知识与问题》共分两编,第一编初等数论的知识,第二编100道数论问题及解答。第一编包括第1章数的整除性,第2章同余,第3章数论函数,第4章不定方程,第5章连分数以及习题答案与提示;第二编包括第6章100道数论问题,第7章解答;附录包括2009年国家集训队的几道试题及空间格点三角形的面积。 《初等
大约四百年前一个冬日的夜晚,法国青年、日后的解析几何发明人笛卡儿作了一串奇怪的梦,这就是科学史上有名的笛卡儿之梦。笛卡儿的梦想究竟是什么?《笛卡儿之梦》以翔实的史料考察这一科学史谜题,深入浅出地介绍了从笛卡儿之梦开始,人类共同的、古老而又现代的追求一一使数学推理乃至更一般的脑力劳动机械化,简明扼要地描述了数学家们为实现
组合优化,作为应用数学中最年轻而又至关重要的领域之一,整合了组合数学、线性规划以及算法理论的方法和技巧。由于它在解决从远程通讯到超大规模集成电路、从产品运销到航班机组排班等领域内困难问题方面的成功,这一领域在过去的十年里取得了巨大的、超乎寻常的发展。《组合优化》是对这一数学分支的一个理想介绍,它适用于离散数学、计算机科
《数学分析(下册)(第3版)》是教育部“高等师范教育面向2l世纪教学内容和课程体系改革计划”的研究成果,是面向21世纪教材和普通高等教育“九五”国家教委重点教材,《数学分析(下册)(第3版)》第一版在1987年国家教委举办的全国优秀教材评选中获全国优秀奖。《数学分析(下册
《李理论与表示论(英文版)》包含华东师范大学2009年及2006年“李理论与表示论”研究生暑期学校的4篇讲义。内容包括李超代数表示论的一些新的发展;有限群概型的几何与组合方面的理论;简约代数群及相关Frobenius核、李型有限群的上同调理论与相互关联;D-模理论在李理论中的应用等。各作者对相应的专题进行了比较详尽和透
《高等师范院校数学专业教材:复变函数》基于作者多年教学经验编写而成,主要内容包括复数与复变函数,解析函数,复变函数的积分,解析函数的幂级数展开,解析函数的罗朗级数展开与孤立奇点,留数理论及其应用,共形映射。在内容的叙述上,力求做到与数学分析的内容相衔接。另外,《高等师范院校数学专业教材:复变函数》在每一节后配备了针对性
《数学的思维方式与创新》是作者在北京大学多次给本科生讲授“数学的思维方式与创新”素质教育通选课的教材.什么是数学的思维方式?如何培养学生的数学思维能力?数学的思维方式包括哪几个环节?作者用通俗易懂的语言论述了数学思维方式的五个重要环节:观察一抽象一探索一猜测一论证。讲述了数学上的创新是如何推动数学的发展,而数学的思维方
吉米多维奇的《数学分析习题集》的内容概括了《数学分析》的全部命题,但该书习题数量多,许多题目在题型和解题方法上具有相似之处,同时该书难题多,许多题目的难度超出对同学们的要求。为了帮助广大同学更好地掌握《数学分析》的基本概念,综合运用各种解题技巧和方法,提高分析问题和解决问题的能力,我们从吉米多维奇的《数学分析习题集》中